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DISCLAIMERS:   

The information in this handbook does not represent any official policies or views of the United States 

Army or Department of Defense.   The US Army does not guarantee the accuracy or reliability of the 

information in this document.  This document does not imply government endorsement of any product, 

service, or entity. 

The ACVIP handbooks use the Architecture Analysis & Design Language (AADL) as the language of choice 

to capture architectures.  Use of other Architecture Description Languages (ADLs) would require modified 

guidelines.  

COMMENTS:   

Comments on this document may be provided by sending an email to usarmy.redstone.rdecom-

amrdec.mbx.acvip@mail.mil or calling 256-842-6600. 
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1. Executive Summary 

1.1 Scope and Purpose  
An Architecture-Centric Virtual Integration Process (ACVIP) addresses acquisition goals of affordability, 

reduced program risk, faster upgrade cycle times, and reduced risk of compromised capabilities.  ACVIP 

supports the Department of Defense (DoD) Digital Engineering Strategy [1] and the Modular Open 

Systems Approach (MOSA) [2].  ACVIP addresses these goals by applying architecture-level model-based 

software and systems engineering methods for embedded computer systems during early development 

phases to reduce late-phase rework, avoid work-arounds that compromise system capabilities, and 

streamline certifications and future upgrades. 

Studies have shown that much Engineering & Manufacturing Development (EMD) cost and schedule is 

due to rework that occurs in the software and systems integration and acceptance phases [3, 4].  This is 

often unplanned, resulting in project overruns.  Sometimes the originally desired system capabilities are 

compromised to deal with issues found in late phases.  The root causes for much of this rework can be 

traced back to defects in requirements and architecture and interface specifications.  Expensive defects 

are usually not isolated inside single components; they are defects in how components are assembled and 

interact with each other in the overall system that are not detected until system integration testing.  ACVIP 

provides model-based system engineering methods that are applied in early phases to avoid and detect 

such defects in embedded computer systems, at a point during development when they are much easier 

to correct.  

ACVIP is a model-based dry-run of cyber systems integration early and iteratively during the development 

process.  Virtual integration mimics the architecting and integration of a computing system using digital 

models.  An architecture model of the overall computing system is created and iteratively elaborated.  

Suppliers are issued model-based specifications for components and deliver models of those components 

that are acceptance-tested by virtual integration.  Component models are virtually integrated into the 

system architecture model.  The resulting integrated system model is subjected to multiple analysis tools 

to detect defects and technical risks early, while the costs to repair or mitigate are still low.  ACVIP 

automates the process.  A large number of analyses are performed quickly and iteratively by applying 

multiple tools to a common system architecture model, with information increasing and uncertainty 

decreasing throughout the development process.  ACVIP is applied to computing subsystems, which must 

be rapidly update-able and account for much lifecycle cost (and historically much program overrun and 

risk).  

Because ACVIP manages technical uncertainty and risk, it mitigates program risk.   Because ACVIP mimics 

the development process, it can give early warning of programmatic as well as technical issues, another 

program risk mitigator.  Because ACVIP is highly automated, model integration and analysis can be 

iteratively performed at a rapid tempo for ongoing coordination of multiple suppliers and exploration of 

alternatives, resulting in more agile acquisition. 
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This handbook provides guidelines to engineers and engineering managers for planning and executing the 

ACVIP engineering tasks of an embedded computer system development project.  Project planning 

identifies a network of development tasks, resources, and task inputs and outputs.  For a project that 

incorporates ACVIP, the plans include engineering tasks to develop models, virtually integrate and analyze 

models, identify defects and their root causes, take corrective and preventative actions, support reviews 

and approvals, and deliver models for use by other organizations and on future projects.  This handbook 

provides guidance for planning and executing these engineering tasks. 

Readers are assumed to be familiar with the first two volumes in the ACVIP handbook series, the ACVIP 

Overview [5] and the ACVIP Acquisition & Management Handbook [6].  The ACVIP Overview provides a 

general introduction and describes the motivations, benefits, and basic processes and approaches of an 

ACVIP.  The ACVIP Acquisition & Management handbook provides guidelines for applying ACVIP within 

the DoD acquisition process. 

The ACVIP Acquisition Management Handbook provides guidance for a government audience, while this 

handbook provides guidance for a supplier audience.  Both handbooks are written to be of use to both 

government and supplier, as that helps each understand the activities that the others perform.   This 

handbook addresses contractor systems engineering and software and systems integration personnel; 

and government personnel who issue technical requirements, review technical results, and use delivered 

models and results to support planning of future projects. 

Readers are assumed to be familiar with the SAE International Architecture Analysis & Design Language 

(AADL [7]).  This is the standard semantics and modeling language recommended for Architecture-Centric 

Virtual Integration, and many of the guidelines in this handbook apply specifically to AADL.  Concepts and 

terms from the AADL standard and its annexes will be used in this handbook without definition or citation.  

To avoid ambiguity, terms referring to specific language keywords and grammatical constructs will be 

written in boldface, e.g., type refers to an AADL type declaration, system refers to an AADL system 

declaration. 

This handbook is informative rather than prescriptive.  “Should” means a guideline is recommended in 

most cases but may not be suitable for all.  “Should consider” is used for issues that arise in most projects 

and should be addressed in some way, but there is no single recommended way to do so. 

1.2 Concepts and Terms 
A system is “an aggregation of system elements and enabling system elements to achieve a given purpose 

or provide a needed capability. The enabling system elements provide the means for delivering a 

capability into service, keeping it in service, or ending its service and may include those processes or 

products necessary for developing, producing, testing, deploying, and sustaining the system [9].” 

A model is “a representation of one or more concepts that may be realized in the physical world. Models 

are represented in many forms including graphical, mathematical, and physical prototypes.   Typical 

systems engineering models may include behavioral, structural, geometric, performance, and other 

engineering analysis models.  Model Based Systems Engineering (MBSE) is the formalized application of 
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modeling to support system requirements, design, analysis, verification and validation beginning in the 

conceptual design phase, and continuing throughout development and later life cycle phases [8][10].”  

In this handbook the singular “model” refers to any collection of AADL packages that satisfies the syntactic 

requirements of the AADL standard.  The term “model” has compositional and extensional semantics – 

multiple models may be integrated to form a system model, a system model may be decomposed into 

component models, and one model can be declared as an extension or refinement of another model.  

The term “model element” refers to any individual declaration, value, object, or grammatical clause within 

a model. 

Architecture is “the fundamental organization of a system embodied in its components, their relationships 

to each other, and to the environment, and the principles guiding its design and evolution [11].” An 

architecture description is “a collection of products to document an architecture [11].”  This handbook 

deals with architecture descriptions that are written in AADL, which enables analysis of architectures from 

multiple viewpoints to support an ACVIP. 

The term “component” is used in this handbook to mean a part of a system, a “system element” in the 

first definition above.  A system consists of an integration of components.  A component may be further 

decomposed into subcomponents, and the term “component” is considered synonymous with 

“component or subsystem.”  AADL models of multiple components can be virtually integrated to form an 

AADL model of a system of components, and an AADL model of a system can be decomposed into models 

of its subcomponents together with declarations of how those subcomponents interact with each other. 

The term “capability” is used to mean a characteristic or behavior of a system that makes that system 

useful for people as they carry out some activity for some purpose.  The term “requirement” is used to 

mean information that describes functional and non-functional aspects of a system that will ensure that 

system provides the desired capabilities.   Requirements are derived from desired capabilities as well as 

other information such as technology and programmatic resources and constraints.   

The term “specification” is used in this handbook to denote any human-readable form of technical 

information about a product or its environment or its use.  This may range from operational requirements 

specifications to rigorous detailed engineering specifications of individual components.  

1.3 Handbook Outline 
This handbook is divided into six sections.  An ACVIP Management Plan checklist, a bibliography, and a list 

of acronyms are included as appendices. 

Section 2: Develop ACVIP Management Plan identifies high-level goals and requirements to be satisfied 

and verified using ACVIP methods.  It identifies the methods, tasks, artifacts, model exchanges, and 

schedules to accomplish this. Contractor ACVIP Management Plans for specific contracts are developed in 

response to customer (government) ACVIP Plans for the program.  ACVIP plans define engineering tasks 

for multiple organizations involved in a project.  Like the system engineering management plans they 

support, they are living plans.  
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Section 3:  Structure Models for Delivery and Virtual Integration defines concepts and terms used to 

describe how models themselves are modularized for delivery and virtual integration.  Models are 

developed, delivered, and virtually integrated to create larger models.  ACVIP plans must identify and 

describe models in sufficient detail so that, when combined, they form an integrated model that satisfies 

the AADL legality rules and ACVIP Management Plan. Guidelines are provided for specific modeling 

patterns and AADL language features. 

Section 4: Support Certification Approvals and Readiness Reviews provides guidance when modeling & 

analysis is applied to certification requirements.  Specific guidelines for safety and cybersecurity are 

provided.  There are additional considerations to be addressed if modeling & analysis outputs are used as 

evidence for certification. 

Section 5: Define Model Content Needed for Analyses and Reviews provides AADL-specific guidance for 

capturing specific kinds of information for specific kinds of analysis.  The guidelines in this section are 

organized using familiar major review milestones, but ACVIP is adaptable to different acquisition paths 

and development processes.   

Section 6: Assure System Conforms to Models provides guidance to assure the to-be and as-built system 

conforms to its model-based specifications and the analysis results are acceptable for their intended use. 

To help understand and apply these guidelines, this document includes examples and notes on related 

topics and rationale.  Any standards, patterns, methods, tools, or other project or technical data used in 

examples and notes are not guidelines or recommendations.  They are hypothetical stories and 

background to help understand and apply the guidelines. 

Note: Notes and examples will be labeled as such, indented, and written in an italics font.  Figures 

and tables referenced in notes and examples will also be so marked. 

Note: The text of this document includes linked cross-references to specific sections, such as the 

Develop ACVIP Management Plan section. These will be underlined to indicate they are links.  

Where the occasional forward link appears, effort has been made to provide some anticipatory 

context. 

Example: The Open Source AADL Tool Environment (OSATE) is an AADL Integrated Development 

Environment (IDE) that is one among several available AADL tools.  The guidelines of this handbook 

are not specific to any particular tool, so planners and users of OSATE must consult the OSATE help 

files for details specific to the capabilities of that tool. 

Note: This is a living document originally developed with the support of the US Army Joint Multi-

Role (JMR) Technology Demonstrator (TD) Mission Systems Architecture Demonstration (MSAD) 

Science & Technology (S&T) program.  It is an asset in the Future Vertical Lift Architecture 

Framework.  Regular updates will occur.  Readers of this document are encouraged to submit 

recommendations and corrections by communicating with the listed government point-of-contact 
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for the issuing office. Comments can be provided by sending an email to: 

usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil or calling 256-842-6600. 

2. Develop ACVIP Management Plan 
This section provides guidelines for planning the ACVIP elements of an individual contracted project, 

which is a single program element within an overall acquisition program lifecycle.  There are five umbrella 

planning themes that reappear in various detailed forms throughout this handbook. 

• ACVIP is a model-based dry-run in advance of software and computer system integration.  Model 

development and virtual integration plans should reflect system requirements and development 

plans.  Models for components will be acquired from the suppliers of those components, and 

descriptions of models to be delivered should be given to suppliers just as they are for delivered 

components.  Virtual integration of component models will be performed by the system 

integrator.   Models, analysis results, and corrective and preventative actions that resulted, are 

reviewed at major review milestones. Problems encountered during execution of the virtual 

integration plans may identify risks in overall development plans, avoiding defects in project 

planning as well as technical defects. 

• ACVIP is applied in the domain of safe, secure, real-time computer system architectures.  ACVIP 

is planned and executed in the broader context of overall systems and multi-disciplinary 

engineering.  ACVIP models and tools must interoperate with other models and modeling tools.  

Within ACVIP, a single core system architecture model is developed that is annotated and used to 

perform multiple automated analyses.  This reuses modeling effort for multiple purposes, assures 

consistency between multiple analysis results, enables trade studies, and enables a rapid tempo 

of automated analysis iterations. 

• Planning begins with the identification of purposes, goals, and requirements.  Plans are then 

refined to meet those.  For example, from a goal of reducing risk of project overrun by reducing 

unplanned rework, categories of integration defects that are to be avoided are identified; then 

analyses able to detect their root causes are identified; then descriptions of the models that must 

be developed to perform those analyses; then schedules for model deliveries, virtual integrations, 

and analyses; then activities to provide the necessary assurance the system (to-be or as-built) 

conforms to the model and analysis results. 

• The models used for virtual integration should be part of the requirements and specifications for 

the system and its components.  Modeling and virtual integration should be aligned with system 

development and integration (or more accurately, vice-versa).  This provides assurance that 

modeling and analysis results accurately describe the to-be and as-built system. 

• Models serve as a means of communication, not just as input to tools.  Models should be well-

structured and well-documented.  Models should be accompanied by a “model users guide” that 

explains the purpose and how to use a model.  This is particularly true for models provided as 

assets in a Technical Data Package (TDP) for open systems. 

mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil
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2.1 Acquisition Context 
ACVIP plans should be tailored for each acquisition program and each project within a program.  A 

government Program ACVIP Plan is created and managed by the Program Systems Engineer to address 

the overall ACVIP management approach.  The supplier develops a more detailed ACVIP Management 

Plan that responds to the Program ACVIP Plan.  This is analogous to the development of a System 

Engineering Plan (SEP) and a responding System Engineering Management Plan (SEMP).  As with the SEP 

and SEMP, ACVIP plans are updated as needed throughout the program and each project.  The initial 

ACVIP Management Plan should be completed shortly after project start, in the same time-frame as the 

System Engineering Management Plan.   

ACVIP plans should be documented and well-integrated with overall program and project plans, but this 

handbook is silent about how ACVIP planning information should be captured in a specific set of 

documents.  Some planning information may be represented using models (e.g., Business Process 

Modeling Notation), but the overarching plan is expected to be captured in natural language documents 

since much information (such as intended uses of models and rationale) is meta-data about models rather 

than data declared in models.  The Program System Engineering Plan and individual procurements should 

say how these plans are to be documented and delivered.  An ACVIP Management Plan document may 

be a deliverable, or that information may be included in other required planning documents.  

The organization of portions of this handbook reflects common defense acquisition milestones (System 

Requirements Review, etc.).  This is not intended to constrain the development processes used to meet 

planned milestones and deliverables.   ACVIP planners should adapt these guidelines as necessary for 

agile, iterative, incremental, etc., development processes.  The ACVIP Acquisition Management Handbook 

provides guidelines for ACVIP in the context of the adaptive acquisition framework, such as Software 

Acquisitions and Incremental Design Reviews [6].  The process can have a significant impact on planning 

for certain goals.  For example, a goal of adapting to rapidly evolving requirements is more easily 

addressed using an agile or incremental development process, and ACVIP plans for such processes may 

include methods such as continuous virtual integration. 

Figure 1 Notional ACVIP Project Milestones shows conventional milestones that may appear in an ACVIP 

Management Plan.  Other review milestones may also occur, such as a mission system integration Test 

Readiness Review (TRR).  ACVIP plans are continually refined and incrementally executed throughout the 

development phase.  Requirements modeling and the results of virtual integration modeling and analysis 

will be reviewed at planned intervals.  Consistency of the final model deliverables with the system 

deliverables will be verified at Physical Configuration Audit.  Certification and readiness review schedules 

will depend on the project requirements identified in the Program System Engineering Plan and Program 

ACVIP Plan. 
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Figure 1 Notional ACVIP Project Milestones 

2.2 Identify ACVIP Purposes, Goals, and Requirements 
ACVIP planners should first identify goals for the planned ACVIP activities, where “goals” encompasses a 

variety of terms such as requirements, key business drivers, quality attributes, open systems, performance 

specifications, and certification approvals.  Here is a list of goals that can be supported by the guidelines 

in this handbook.  Although the basics of ACVIP are common to all these goals, the selection and tailoring 

of different goals for a specific project will affect the plans. 

• Reduce risk of project overrun by improving early detection and correction of architectural 

defects that would otherwise result in significant unplanned rework during software and system 

integration and acceptance testing. 

• Achieve Modular Open Systems Approach (MOSA) objectives by modeling key interfaces in a 

standard architecture modeling language with standard semantics for the domain of embedded 

computer systems, with interface consistency verified and upgradeability evaluated by analyses 

and virtual integration studies. 

• Reduce technical risks by modeling and analyzing technical uncertainty; and by modeling and 

analysis to verify that identified technical risk mitigators can be effectively integrated if needed. 

• Increase affordable capability by improving trade studies between cost versus capabilities, and by 

reducing the sacrifice of planned capabilities in order to stay within budget and schedule. 

• Streamline certifications by using model analysis and verification results to reduce defects found 

in late-phase certification reviews and as evidence for certification and approval authorities. 

• Reduce cost, schedule, and risk for subsequent system upgrades by delivering computer system 

architecture modeling & analysis assets that benefit future projects or other programs. 

ACVIP plans identify component models to be developed, virtually integrated into a system model, and 

analyzed, in order to achieve these goals.   Some models will be deliverables that must satisfy customer 

requirements derived from customer goals and directives. 

ACVIP plans identify and describe the following.  

• Goals and requirements to be met by ACVIP tasks, captured in models, and verified by analysis 

• The scope, purpose, structure and content of the model(s) to be developed 

• Modeling standards, libraries, and patterns to which delivered models must conform 
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• Virtual integration milestones, the analyses to be performed, and results to be produced 

• Methods and acceptable tools to perform virtual integration activities 

• Milestones, procedures, and formats for delivering models and analysis data 

• Procedures for taking corrective and preventative actions based on analysis results 

• Configuration management of the models and key development tools and data 

• Activities to assure compliance of to-be and as-built systems with their models 

• Models, analysis results, methods, and tools to support certification reviews and approvals 

• Support for other related activities such as program, risk, and configuration management 

• Schedules, resources, training, milestones, and performing organizations 

The ACVIP Management Plan is a living plan.  The initial plan should anticipate that it will be refined during 

project execution to improve efficiency and effectiveness of the ACVIP tasks. 

Example: An initial ACVIP Management Plan states that an architecture model shall be developed 

prior to System Requirements Review (SRR) that allocates functional requirements to major 

software and hardware components and captures required reserves for processor loading and 

size/weight/power.  Uncertainties in the model parameter values shall be identified, sensitivity to 

those parameters shall be analyzed, and high-risk elements of the model identified.  The ACVIP 

Management Plan shall be updated after SRR with plans to further detail high-risk portions of the 

model and reduce uncertainty in high-sensitivity parameters prior to PDR.  Preliminary analysis of 

processor loading and size/weight/power shall be reviewed at Preliminary Design Review (PDR) 

and tracked through system integration Test Readiness Review (TRR). 

Define Model Content Needed for Analyses and Reviews identifies several kinds of ACVIP analyses that 

may be performed at project milestones.  The guidelines describe the content of AADL models needed to 

perform those analyses.  This list is neither exhaustive nor exclusive.  ACVIP plans should select guidelines 

from this document and tailor or extend them as needed for a specific acquisition program, family-of-

systems, or system-of-systems.  This handbook serves as a reference for engineers performing ACVIP tasks 

as much as a menu of issues to be considered by planners. The level-of-detail in the plan should be 

appropriate for the project, as complex as necessary, as simple as possible.   

Example: The government is acquiring a software component that will be provided as Government 

Furnished Information (GFI) to other contractors on other projects.  The final delivery TDP  shall 

include an AADL model of that component that can be virtually integrated into the AADL 

architecture models of multiple other contractors. To accomplish this goal, the government 

provides as a supplement to the solicitation an AADL model that captures key interfaces and 

protocols of the execution environments into which the delivered model may be virtually 

integrated.  This model has a “Your component model goes here” (analysis harness) structure.  The 

acceptance criterion is that the delivered component model will virtually integrate into this 

execution environment model and then pass a specified set of interface consistency analyses. 

When describing the purpose of a model, an important distinction is model-as-specification versus 

model-as-description. 
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• If the purpose is model-as-specification, then models must be developed early and included as 

part of the system requirements and specifications.  If the as-built system does not conform to 

the model, then the as-built system is defective.  This is usually what is meant when engineers 

refer to model-based engineering. 

• If the purpose is model-as-description, then the models describe existing components and 

environment behaviors in order to enable certain analyses.  If the model does not accurately 

describe the as-built system or its environment, then the defect is in the model.  This is usually 

what is meant when scientists refer to a model of a system. 

This distinction may be made for models as a whole, but it is often the case that different elements in the 

same model have different purposes.  For example, an upper bound on thread execution times or a fault 

rate for a processor could be requirements to be met, or they could be descriptions of a component to be 

reused.  The plan should distinguish whether a model element is a specification or a description in order 

to distinguish which artifact serves as the ground truth, which is defective, and who bears the 

responsibility to repair the defect.  This will be discussed further in Structure Models for Delivery and 

Virtual Integration. 

2.2.1 Reduce Risk of Project Overrun 

Project risk management begins with risk identification [9].  Modeling & analysis should be identified 

during ACVIP planning that have good early detection effectiveness for categories of defects that can 

cause expensive late-phase rework.  The selection of analyses will depend on both the characteristics of 

a specific project (e.g., safety or security approvals required, prior experience with similar systems, special 

technical risks, cost/benefit trade of late rework reduction versus early modeling & analysis effort) and 

available methods and tools. 

Example: Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle 

Software summarizes two taxonomies of requirements defects that were developed during studies 

of defect data from several National Aeronautics and Space Administration (NASA) programs.  

These studies looked at requirements defects that resulted in significant late rework or significant 

increases in operator workload due to reduced system capabilities. 

Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle Software 

Example Software 
Requirement Fault Taxonomy [10] 

 Example Requirement Error 
Root Cause Taxonomy [11] 

Incomplete  Requirement recognition 

Omitted/missing  Requirement deployment 

Incorrect  Interfaces not adequately identified/understood 

Ambiguous  Hardware behavior anomalies 

Infeasible  Interface specification not documented/communicated 

Inconsistent  Interface design during testing 

Over-specification  Lack of communication between hardware/software team 

Not traceable  Hardware behavior not documented 

Unachievable  Requirement not identified 

Non-verifiable  Requirement not understood 
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Another source of significant rework is changes to requirements and architecture specifications made 

during project execution. ACVIP plans should consider the project plans and development processes put 

in place to respond to requirements changes.  ACVIP plans should support requirements change 

management.  Consideration should be given to ACVIP elements that can support agile acquisition 

processes as needed.  Later sections on Identify Relations Between Models, Identify Variation Points, 

Configurations, and Dynamic Behaviors, and Identify Change and Configuration Management Procedures 

provide guidelines that support trade studies, product lines, and change management. 

The root cause of expensive rework may appear in an early model not as something that clearly fails an 

analysis but as something that introduces unnecessary complexity and increases risk of future defects.  

This risk may depend on the engineering methods and processes used during subsequent development 

tasks.  For example, the risk of later mistakes may depend on whether an engineering method will be used 

that is able to deal with a certain kind of complexity or selected technology in a system architecture.  

Models should be reviewed or analyzed to assess this category of root causes (risk due to unnecessary 

complexity or incompatibility with down-stream development and manufacturing processes).  

Preventative as well as corrective actions may result from virtual integration reviews. 

Example: At the Preliminary Design Review (PDR), the architecture model shows that some 

software components use a request-response protocol for interacting with a data server.  The 

model shows that the compute platform will comply with the ARINC 653 standard, which uses a 

static cyclic schedule to alternate between isolated software components.  A preliminary latency 

analysis shows that some software components will need to send anticipatory requests a cycle 

before data is needed, data server applications will need to service incoming data writes before 

incoming data requests, and clients and data servers will need to operate at different periodic 

rates.  The resulting software and system integration problem is potentially solvable, but it would 

be less complex and defect-prone for software component developers and integrators if either (1) 

a periodic publish-subscribe protocol was used for all software components with that execution 

environment scheduling protocol, or (2) an event-driven execution environment scheduling 

protocol were used with that software request-response protocol. 

Experience shows that the task of creating a model in a rigorous modeling language will reveal defects in 

other work products, such as ambiguities and missing information in a natural language document from 

which a model has been derived.   Engineering tasks that create models also serve as a form of structured 

review for all the sources of information used to create that model before that model is subjected to 

further analysis.  ACVIP plans should anticipate that corrective and preventative actions will be needed 

for defects detected during model development tasks. 

Misplaced  Specification imprecise/unsystematic 

Intentional deviation  Requirement missing from document 

Redundant/duplicate  Incomplete document of requirement or change 

  Coding error persists to integration testing 

  Design inadequate for required function 
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2.2.2 Satisfy Modular Open Systems Approach Objectives 

A Modular Open Systems Approach (MOSA) is required for major defense acquisition programs [2].  The 

Technical Data Package (TDP) of a system must be open as well as the system itself.  The TDP should also 

use appropriate available standards. ACVIP uses a standard modeling language in the domain of safe, 

secure, real-time computer system architecture, with annexes to standardize alignment with other 

standards.  This provides a standard way to specify key interfaces.  Virtual integration with automated 

analyses can also support verification and validation of openness quality attributes. 

Achieving MOSA goals may require delivery of models in standard formats that allow other parties to 

perform analysis, trade study, verification, and upgrade tasks using reasonably affordable and non-

proprietary tools.  Address Access Restrictions contains guidelines for dealing with supplier intellectual 

property while delivering open architecture models. 

Example: The Statement of Work (SOW) for a program calls for the supplier to evaluate the 

openness of a mission system using a set of upgrade scenarios provided by the government.  The 

Open Systems Management Plan from the supplier identifies three methods that will be used: 

Human inspection using a scenario-driven review reading technique, to be reviewed at PDR [12]; 

model-based virtual integration exercises for a subset of the MOSA scenarios selected by the initial 

reviewers, to be reviewed at CDR; and prototype update exercises during software and systems 

integration for a small subset of scenarios whose selection is guided by virtual integration risk 

assessments, to be reviewed at milestone C. 

2.2.3 Reduce Technical Risk  

Technical risk management is needed for projects using new technologies or having challenging 

performance requirements.   Key performance parameters that might not be satisfied are technical risks.   

Where a key performance value can be obtained by applying a suitable analysis to a suitable model, 

modeling & analysis can be used to support risk management.  This requires identifying the uncertainties 

present in a model, determining how those uncertainties affect the analysis results for key performance 

values (called uncertainty propagation or sensitivity analysis [13]), and then reducing key uncertainties 

and identifying alternatives to mitigate unacceptable technical risks.  Virtual integration exercises can 

increase assurance that technical risk mitigators will be effective and can be efficiently integrated or 

substituted if needed. 

Key performance parameters having significant technical risk due to uncertainties in design parameters 

should be identified that can be determined by analysis of the architecture model.  This analysis should 

be performed at the appropriate reviews, and risk analysis and mitigation should be done based on the 

analysis results.  Later sections on Identify Variation Points, Configurations, and Dynamic Behaviors and 

Define Model Content Needed for Analyses include guidelines on modeling architectural alternatives, 

capturing uncertainty in models, and sensitivity analysis. 

Example: Due to unusually stringent constraints on size, weight and power for a new Unmanned 

Air Vehicle (UAV), program planners have determined there is significant risk of software demand 

exceeding hardware capacity.  The ACVIP plan says that the AADL model provided at PDR shall 
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include demand and capacity estimates for the software and hardware components.  The model 

shall be subjected to an analysis of weight, power, and hardware loading that shows sensitivity to 

the uncertain demand and capacity parameter values.  The AADL model shall also include variation 

points that identify architectural alternatives having lower software demand (and the 

functionality and performance sacrificed for those alternatives) to mitigate this risk. 

Example: A system integrator will be integrating several yet-to-be-implemented software 

applications from multiple suppliers onto a single processor module.  Worst-case execution times 

that appear in the AADL component models at PDR were estimated using operation counts and 

benchmarks for similar components used on an earlier program.  These model parameters have 

significant uncertainty.  To mitigate the technical risk of overloading the processor when software 

is delivered and integrated, suppliers are directed to update their component models with 

improved estimates on a weekly basis between PDR and component delivery.  The system 

integrator configures a continuous virtual integration server to pull component models from 

supplier repositories each week, virtually integrate them, and re-run the hardware capacity 

analysis.  A dashboard display shows trends in software demands and hardware loading as the 

project proceeds after PDR. 

2.2.4 Increase Affordable Capability 

Reductions in project rework and duplicated work, improvements in technical risk management, and more 

agile and adaptive project planning and execution, can translate into either increased system capability 

within planned funding or cost savings for needed capabilities, depending on the acquisition objectives of 

the Program Office.  Planners should consider ACVIP tasks that support identifying and managing these 

trade-offs.  

Unplanned rework during software and systems integration is often dealt with by sacrificing planned 

capabilities in order to minimize cost and schedule overruns.  ACVIP planners should consider categories 

of defects that have significant risk of being resolved during integration and acceptance testing by 

reducing or delaying operational capabilities, by work-arounds to operating procedures that increase crew 

workload, or by work-arounds to logistics and maintenance procedures that increase sustainment costs 

or reduce system availability [9]. 

An ACVIP architecture model of the system can be subjected to a variety of analyses in support of 

improved trade studies.  Identify Variation Points, Configurations, and Dynamic Behaviors provides 

guidelines for modeling variation points useful for trade studies.  Conventional trade space exploration 

automation methods can be applied to determine and trade-off various performance metrics.  Advanced 

techniques such as continuous virtual integration with trade-off curve dashboards can be considered. 

Agile, iterative, etc., development processes may improve combined, overall results (help push 

technology boundaries).  Projects where requirements and desired capabilities may change during a 

project, or projects that have significant technical risk and require management of multiple technical risk 

mitigators, will particularly benefit. 
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2.2.5 Streamline Certifications 

Failure to receive certification or readiness approvals is an important category of potentially expensive 

rework.   ACVIP can be applied for the purposes of reducing defects that are not detected until late phase 

review by certification authorities identify shortcomings.  If ACVIP outputs are also submitted as evidence 

to certification authorities, a much higher level of assurance is needed that the analysis results are correct 

and that the models accurately describe the as-built system.   

In contrast to other goals, which can benefit from even modest improvements in defect detection 

effectiveness and risk management, certifications require a higher degree of assurance that models and 

their analyses capture the behavior of the as-built system.  ACVIP plans for certifications should employ 

the baseline ACVIP architecture model to produce certification evidence, which reduces overall effort and 

increases assurance the evidence is consistent with the system built according to the model-based 

specification.   Support Certification Approvals and Readiness Reviews provides additional guidelines 

where ACVIP plans include providing evidence in support of certifications and approvals. 

ACVIP planners should consider categories of defects that have high risk of escaping into fielded systems 

with significant risk of consequential costs such as death, damage, or mission failure. 

2.2.6 Benefit Future Upgrades and Families of Systems 

Program Offices should consider life cycle management of ACVIP assets across the program as they 

develop and maintain their Program ACVIP Plans [6].  The ACVIP Acquisition Management Handbook 

provides guidance for overall program management [6].  This handbook provides engineering 

management guidelines to address these Program Office goals for both government and supplier 

personnel. 

Anticipated upgrades to a system should be considered when developing both Program ACVIP Plans and 

ACVIP Management Plans.  The intended uses of a delivered model should be considered, such as the 

analyses, configuration data generation, or model-based testing that model should support.  

Requirements on models delivered at the end of a contract should make those models useful assets for 

the next upgrade project.  The Program ACVIP Plan should Identify Change and Configuration 

Management Procedures across the program life cycle. 

Using delivered models, the government may supply future projects with a modified model that reflects 

government trade studies and is part of the specification of an upgrade to be performed.  Planners should 

determine if a delivered model should also include variation points (architecture alternatives) in order to 

support future trade studies or risk management.    Identify Variation Points, Configurations, and Dynamic 

Behaviors provides guidelines for modeling variation points. 

A project may be upgrading a legacy system for which no models exist.  ACVIP will require development 

of some models of the existing system in such cases.   The cost of some model development may be 

recovered due to reductions in unplanned rework on a single project.  There is a long-term benefit in 

developing and delivering models that benefit subsequent anticipated upgrades.  In some cases, this may 

require more modeling and analysis effort than is necessary for a particular project, and the benefits 
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accrue over time.  The Program Office and contractor should collaboratively Select Cost-Effective 

Modeling & Analysis.  Guidelines for  Mixed-Fidelity Modeling and Analysis are useful in these cases. 

Program Offices may manage product lines or families-of-systems [14].  Consideration should be given to 

having a project contribute models or model updates to those government assets.  The Program Office 

should consider requiring supplier trade studies tasks to support a determination of what modeling 

information belongs at the family-of-systems (product line) level versus at the deployed system level. 

Consideration should be given to identifying and collecting metrics that will inform and improve overall 

effectiveness, efficiency, and risk estimation for future projects and other programs.  Additional guidelines 

on this topic appear in Select Cost-Effective Modeling & Analysis. 

2.3 Integrate with the Overall Development Process 
ACVIP plans overlap with and should be consistent with many other plans.  In addition to the System 

Engineering Management Plan, projects may require plans such as a Modular Open Systems Plan, Model 

Management Plan, Model Configuration Management Plan, etc.  Define Model Content Needed for 

Analyses and Reviews provides guidelines to align ACVIP results with review milestones.  Support 

Certification Approvals and Readiness Reviews provides guidelines to align with certification plans.   

An Authoritative Source of Truth (ASoT) will include a variety of models written in a variety of languages 

for a variety of purposes.  This handbook provides guidelines for using AADL models to perform ACVIP 

tasks.   There will inevitably be information dependencies and requirements for consistency and 

traceability between AADL models and other kinds of documents and models.  Identify Sources and 

Representations for ACVIP Data and Identify Relations Between Models provide guidelines for managing 

relationships between AADL and other kinds of models. 

2.4 Identify Needed Skills and Training 
The skills needed for ACVIP lie somewhere between those of traditional systems engineers and traditional 

software and hardware engineers.  ACVIP requires some of both.  ACVIP also requires model-based 

development skills to create, use, and manage models. 

Systems engineers allocate stakeholder requirements, and other types of requirements such as regulatory 

and policy requirements, to system elements.  They are responsible for mapping customer needs into an 

implementable and sustainable product.  They perform trade studies, they define the system architecture 

and assure all its elements work together to meet stakeholder needs, and they identify uncertainties and 

manage risk.  All these skills are needed for ACVIP. 

Software and hardware engineers are familiar with the technologies needed to implement the system.   

Software and hardware integration skills are needed for ACVIP.   Although initial ACVIP models may be 

fairly abstract, eventually key technical details must be modeled with sufficient precision to enable 

automated analysis.  

Model-based engineering at the component level, such as models from which application code can be 

generated, is fairly mature and wide-spread.  Effective model-based engineering of components requires 
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specialized skills and experience with the specific modeling languages and tools that are used.  At the 

highest level of systems engineering where stakeholder needs are captured, models are still largely 

structured diagrams that are assured primarily by human review rather than by automated analysis.   

ACVIP is a relatively new practice that falls between these two skill sets.  ACVIP is a model-based bridge 

between stakeholder needs and an integrated system of implemented components that employs a 

relatively high degree of automation.  Gaps in skills and experience should be identified and appropriate 

training performed prior to the start of ACVIP execution. 

2.5 Select Cost-Effective Modeling & Analysis 
Like software, modeling & analysis can consume an arbitrary amount of development resources if not 

properly scoped and managed.  ACVIP planners should consider cost versus benefit given the available 

development resources and model analysis capabilities. 

The primary way that ACVIP planners control costs versus benefits is through their selections and 

specifications of the analyses to be performed.  It is recommended to do ongoing root cause analysis of 

defect databases to identify categories of defects that are to be targeted for early detection using ACVIP 

methods.  The categories should be specified in a way that informs decisions about selecting and 

specifying the scope of analyses and the times at which they are to be initiated during development.  

Define Model Content Needed for Analyses and Reviews provides guidance on selecting and specifying 

different kinds of analyses. 

Improving early defect detection is the primary ACVIP means to reduce rework cost, schedule and risk.  

Several studies have shown that detecting and fixing defects when they first occur during the initial phase 

can be between 30 and 1000 times cheaper than correcting them during integration testing, with 

corrections after initial fielding being even more expensive [15].  Studies indicate that even modest 

improvements in early defect detection can be cost-effective in reducing late phase rework [16, 17].  One 

study estimated that improving early defect detection by 10% would be cost-effective [18].  Some degree 

of false positive results is also acceptable.  The goal is to achieve a good cost/benefit trade-off between 

early-phase effort spent and late-phase effort avoided.   

Issue tracking and root cause analysis are common practice.  Organizations typically do studies to 

categorize defects as a means to help improve development processes.  When designing such studies, 

organizations should categorize defects in a way that informs ACVIP planning.  Categorizations of defects 

should be developed based on the likelihood that available modeling & analysis methods and tools could 

detect those defects and the expected cost-to-repair for each category of ACVIP-avoidable defects. 

Example: In a review of previous projects, a number of issues were found in the issue tracking 

system whose root causes were timing race conditions.  Engineers estimated that only a third of 

these are likely to have been caught during CDR using available modeling methods and tools.  

ACVIP planners decide to perform the modeling & analysis that is feasible because (1) a large 

amount of time was spent in the system integration lab in previous projects to find the causes of 

intermittent timing issues, (2) repair required that multiple suppliers make changes to their 

delivered components, and (3) the costs of previous repairs exceeded the estimated modeling and 
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analysis effort to be spent by a factor of ten, and engineers judged it very likely that  more than 

10% of such errors would have been detected using virtual integration methods. 

Example: In a review of previous projects, a number of issues were found in the issue tracking 

system due to miss-matched variable and file import names between software source code units.  

The project plan calls for suppliers to deliver configurable source code, in a number of cases 

automatically generated using commercial tools.  The software and systems integrator will 

configure delivered code for a specific system.  ACVIP planners decide not to model Application 

Program Interfaces (APIs) in detail such as source code and file names because: (1) significant 

multi-organization collaboration would be required to create and maintain such detail in the 

models, (2) automatic application code generation limits supplier control over source code naming 

and data representation, and (3) the project plan makes it easy for the system integrator to make 

minor modifications such as name changes during software integration at little cost with little or 

no ripple effects. 

A second method that ACVIP planners can use to control cost versus benefit is to vary the degree of detail 

and certainty to which modeling and analysis is performed.  A uniform level of detail across the entire 

model is usually not necessary.  Mixed-Fidelity Modeling and Analysis provides guidelines for modeling 

and analysis of different parts of the system model with different degrees of detail and uncertainty.  Effort 

should be focused on the parts and aspects of the system where improved early defect detection has the 

greatest benefit. 

A third method to control cost versus benefit is rolling ACVIP planning.  An ACVIP Management Plan is a 

living document.  The initial plan may call for itself to be updated at milestones.  This is particularly useful 

when combined with plans for risk management.  At each milestone, the risks due to uncertainty can be 

used to decide which portions of a model should be further detailed for which analyses at a subsequent 

milestone. 

For first-time use of ACVIP methods, a program or organization may apply ACVIP as a shadow effort to 

train and gain experience with minimal impact on the baseline project while still providing some ACVIP 

benefits.  However, planners should take into account that this compromises benefits.  Previous 

experience with shadow applications is that ACVIP tasks often significantly lag baseline system 

development, compromising early defect detection and avoidance.  Since a shadow model is not a build-

to specification, removing defects in the shadow model does not always result in removing defects in the 

baseline system design and implementation.  Metrics definition, collection, analysis, and evaluation must 

be done differently to account for these effects, including taking into account the learning curve for initial 

shadow application [19].  

3. Structure Models for Delivery and Virtual Integration 
A key concept of ACVIP is the delivery of models that are virtually integrated to form larger models.  It 

must be possible to independently develop a set of models that can be delivered and integrated into a 

larger model.  All these models must minimally satisfy the syntactic and legality rules of the AADL 
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standard.   This requires appropriate structuring of the AADL system and component models.  Descriptions 

for the models to be acquired must be developed first so they will virtually integrate into the system 

model.  Model versioning and configuration and change management are needed.  Define Model Content 

Needed for Analyses and Reviews provides additional guidelines to support various particular kinds of 

analyses for project review milestones. 

3.1 Identify Sources and Representations for ACVIP Data 
Different modeling languages and tools have been developed for different purposes.  There are usually 

some fundamental concepts common to any given pair of languages, although the terminology usually 

differs.  Some information can be captured in more than one language, but each language has unique 

strengths for that language’s intended purpose.  Different modeling languages have different tools 

available that do different things.  Many modeling languages have alternative representations, such as 

DoDAF and AADL.  The anticipated use case is that different models contain different but overlapping 

information that must be consistent with the ACVIP computer system architecture model.  Tools are 

usually available to translate subsets of one language to subsets of another sufficient to support virtual 

integration of an overall embedded computer system architecture model. 

Planners should identify guidelines for what information is appropriate to capture in what models and 

languages, how information flows and consistency is maintained between different models, and which 

model is the source-of-truth for which information. 

Standard languages with standard semantics for a particular engineering domain should be preferred for 

that domain.  MOSA goals may require delivery of models that the customer can use for analysis, trade 

studies, and to support upgrades to the delivered system.  Such models should be in standard languages 

for which reasonably affordable and non-proprietary tools are available. 

Assuring consistency between all the information captured in all models favors putting more information 

into fewer models.  A single model used for multiple purposes should be preferred over multiple smaller 

models, each used for a single purpose, some used only once.  This simplifies model lifecycle management.  

This provides assurance of consistency between the various analyses, tests, and other artifacts generated 

from models.   

Virtual integration requires that models be structured so they can be independently developed and then 

virtually integrated to form a larger model.  Different modeling languages are better or worse suited for 

this purpose.   Languages that have a modular structure whose sub-models can be stored and exchanged 

independently are preferred.  Planners should consider which modeling languages have been successfully 

used for virtual integration. 

The Systems Modeling Language (SysML) is an Open Management Group (OMG) standard language 

developed for the domain of systems engineering [20].  Systems engineering is an interdisciplinary field 

that applies systems thinking and concepts; addresses operational, organizational, management, and 

lifecycle concerns for all stakeholders; and is general enough to apply to all engineering domains.  A subset 

of SysML requirement, block, sequence, and state machine diagrams may be a source for high-level 

computer system architecture information. 
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DoD organizations are expected to conform to the DoD Architecture Framework (DoDAF) to the maximum 

extent possible [21].  DoDAF specifies information content and organization but not a specific modeling 

language.  The Unified Profile for DoDAF and MODAF (UPDM) is an Open Management Group standard 

profile that refines the SysML profile with DoDAF concepts and is an accepted DoDAF representation.  

Some DoDAF system and operational views may be a source for high-level computer system architecture 

information. 

Future Airborne Capability Environment (FACE) is an Open Group standard that includes a data modeling 

language to capture data architectures [22].  The language provides features to manage a standard shared 

and multiple domain-specific data models.  FACE Unit of Portability (UoP) models can be a source of 

information about the data interfaces for software components.  FACE integration models can identify 

data that is transferred between UoPs. 

The Architecture Analysis and Design Language (AADL) is an SAE standard for modeling embedded 

computer system architectures.  AADL provides standard semantics for integrated systems of software 

and hardware components.  AADL supports use of a single computer system architecture model for 

multiple kinds of analysis, for software and systems integration, and for integrated system verification 

and testing.  AADL supports automation of these tasks by applying multiple tools to an architecture model.  

AADL supports virtual integration of modeling information obtained from multiple other source models.  

This handbook uses AADL as the hub language for performing ACVIP tasks because it was developed and 

has been successfully used for this purpose. 

The standard AADL textual format, which decomposes models into separate packages and files, is the 

recommended representation for model exchange.  A host of tools originally developed for textual 

software source code can then be used for AADL, e.g., source code repositories, diff/merge, version and 

configuration management. 

Individual software and hardware components are typically developed using a variety of modeling 

languages suited to each individual application and component.  For ACVIP, the information needed from 

specialized component models describes aspects of their interfaces necessary for the planned virtual 

integration tasks.  This is often obtained by scripts that extract that information in an AADL format.  

Example: A supplier of a prototype mission system is provided with a Concept of Operations 

(CONOPS) document early in the Technology Maturation & Risk Reduction phase.  The supplier is 

to deliver models that identify key subsystems and interfaces with Government Purpose Rights.  

They are to perform modeling and analysis and review the results at a combined SRR/SFR, PDR, 

CDR, and integration TRR. After establishing technical goals for each review, contractor ACVIP 

planners evaluated SysML, UML, AADL, and Modelica (all standard languages) against these 

requirements.  

The ACVIP Management Plan calls for SysML modeling of mission system capabilities and 

operational scenarios using the Unified Profile for DoDAF/MoDAF (UPDM).  The SysML model will 

include system view diagrams that model the key interfaces and major subsystems and 

information flows of the mission system.  Key interfaces and information flows are to be 
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stereotyped using a SysML AADL profile. These portions of the SysML model are then automatically 

translated into AADL to establish requirements for various ACVIP models and results.  The SysML 

model is the ASoT for the information that is captured in SysML. The generated AADL is to be 

incrementally extended and refined by embedded computing SMEs as additional detail is added 

for analysis and review at successive PDR, CDR, and TRR gateways.  The AADL model is the ASoT 

for derived mission system architecture requirements, specifications, and analysis results that 

detect defects and verify requirements are satisfied.   

These decisions were made because DoDAF and AADL are standards in their respective domains 

and satisfy MOSA requirements; AADL provides standard semantics and properties within the 

domain of embedded computer architecture with a range of analysis tools available; AADL is 

better suited for virtual integration due to the modular structure of the standard textual exchange 

format; and a single model can be progressively refined and subjected to multiple analysis tools 

as the project progresses through reviews and deliveries.  

UML class and state machine diagrams were selected to capture detailed designs and generate 

code for software components that do fault management and message routing.  Modelica models 

were selected to capture detailed designs and generate code for software components that do 

signal processing and feed-back control.  Both of these are standardized languages that have 

semantics and available tools suited for the selected component application domains.  

In previous contractor projects, different groups developed a large number of small spreadsheet 

models for different specialized purposes.  This caused problems due to inconsistency between 

models and poor model lifecycle management.  The ACVIP Management Plan states that the 

Project System Engineer must review and approve development and use of each spreadsheet 

model. 

Example: The government is acquiring a software application for integration into three different 

types of air vehicle.  To assure interoperability with existing software and meet MOSA 

requirements, the application shall conform to Future Airborne Capabilities Environment (FACE™) 

standards and a shared data model.   There are also resource, timing, sequencing, and fault 

handling requirements that fall outside the scope of the FACE™ data modeling language standard. 

ACVIP planners decide that a FACE™ Unit of Portability (UoP) data model will be developed by a 

software component supplier.  A tool will be used to automatically translate the FACE™ UoP 

Supplied Model (USM) to an AADL component interface model.  An AADL extension will be 

manually declared that uses standard AADL properties to add resource, timing and sequencing, 

and fault handling requirements.  FACE integration models will not be used because engineers with 

prior experience said the effort required to fill gaps in AADL generated from FACE using extension 

and refinement is more complex than doing all virtual integration specifications in AADL.  The 

FACE™ and AADL models will be provided as part of the specifications issued to the component 

supplier. 
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3.2 Identify Viewpoints to be Modeled 
Architectures are described using one or more viewpoints [23].  Requirements, functional, data, software, 

and hardware architecture viewpoints are typically modeled, but not all in every modeling language used 

in a project.  Many analyses can be applied to multiple viewpoints, but most cannot be applied to all 

viewpoints.   Planners should consider which viewpoints should be subjected to which analyses and 

document that in the ACVIP Management Plan.  That should guide decisions about what viewpoint 

content should be included in a model.  All of the guidelines in this section apply to the different 

viewpoints. 

AADL has limited standard properties to specify relationships between elements in different viewpoints.  

AADL binding declarations should be used only where the standard AADL semantics apply, such as 

software to hardware bindings.  For other relations between elements in different viewpoints, the 

supplier should coordinate with the customer to arrive at a common AADL property set definition to be 

used.  This property set should align with standard properties available in other modeling languages that 

are used to synchronize with AADL models. 

Example:  The System Engineering Management Plan calls for requirement and functional viewpoints 

to be fully modeled in SysML.  Data, software, and hardware viewpoints are to be modeled in SysML 

at conceptual and logical levels-of-detail.  The conceptual and logical data architecture model is to be 

translated to and synchronized with a model written in the FACE Universal Domain Description 

Language (UDDL), where it will be refined to platform level-of-detail and used as input to various 

analysis and code generation tools.  In preparation for SRR, the SEMP and ACVIP Management Plans 

call for the SysML software and hardware and FACE data conceptual-level viewpoints to be translated 

to and synchronized with a model written in AADL, where they are virtually integrated to form a 

conceptual-level model of the integrated mission system.  Traceability is established through all three 

models using an AADL property set based on the standard SysML traceability relationships.  Static 

interface checking and resource loading analysis are initiated at SRR and incrementally re-executed 

thereafter.  In preparation for PDR, the AADL model is resynchronized with the SysML and FACE logical-

level models.  Behavioral consistency analysis of communication protocols and component life cycles, 

Failure Modes and Effects Analysis (FMEA), and Risk Management Framework (RMF) step 4 analysis, 

are initiated and incrementally re-executed thereafter.  In preparation for CDR, the AADL integrated 

system model is resynchronized with the latest SysML model and the FACE platform-level model and 

extended and refined to platform level-of-detail.  Reliability Block Diagram (RBD) and schedulability 

analysis are added to the mix for review at CDR. 

3.3 Describe Models to be Developed and Delivered 
A request for an item must describe the item to be delivered.  The same is true for models.  This section 

provides guidelines for describing a model that is to be developed or procured for an ACVIP task and 

purpose.  

To describe a desired model, a model-based description should be used.   This handbook uses the term 

“model-based description” rather than “model-based specification” to distinguish a simple model that 

helps describe a more elaborate deliverable model (model-based description) from a model that specifies 
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a deliverable system (model-based specification).  A model-based description is used to procure a model; 

a model-based specification is used to procure a system.  A Data Item Description (DID) or Contract Data 

Requirements List (CDRL) may have an accompanying model-based description, for example.  The ACVIP 

plan for model-based descriptions resembles the supply chain structure: the government issues a model-

based description to a system integrator, who develops and issues model-based descriptions to their 

suppliers, and so forth.   

There is a high potential to reuse an early system specification model to describe a desired elaboration of 

that model as discussed in Abstraction, Elaboration, and Conformance.  The terms “model-based 

description” and “model-based specification” may sometimes only distinguish an intended use of the 

same model. 

In this handbook the singular “model” refers to any collection of AADL packages and property sets that 

satisfies the syntactic requirements of the AADL standard.  The term “model” has compositional and 

elaborative semantics – multiple models may be integrated to form a system model, a system model may 

be decomposed into component models, and one model can be declared as an extension or refinement 

of another model.  ACVIP plans must take the compositional and extensional relationships between 

models into account when identifying models to be developed and delivered. 

Example: A development organization receives an AADL model from each of three suppliers at a review 

milestone.  Each models a software component that will be integrated with other equipment to 

produce a system for an end customer.  Two groups within the developing organization each create 

an AADL model for a piece of equipment developed internally.  A third group then virtually integrates 

all these models to form a model of the system.  This virtually integrated model is delivered to the 

customer for review.  The ACVIP plans identify these as six AADL models (three models delivered by 

suppliers, two models of internally developed equipment, one virtually integrated model that includes 

the other five as subcomponent models).  The plans call for each model to have no external semantic 

dependencies (other than standard AADL pre-declared property sets). 

Models should include comments or have associated documentation that explains the purpose, rationale, 

and intended use of the model – a user’s guide for that model.  Models should be readable.  They should 

be structured and written to facilitate human review.  For large and complex models, an overview of the 

structure of the model as a set of inter-dependent projects, packages, and systems should be provided.  

This may take the form of model configuration documentation. 

ACVIP plans should identify analyses to be performed and the milestone(s) at which those analyses are to 

be reviewed.  This is the primary method to specify what information content is required in a model – the 

model should contain the information necessary to perform the required analysis.  Define Model Content 

Needed for Analyses provides guidelines for different kinds of analysis. 

An important issue to consider is the reuse of existing models for existing components.  Planners should 

evaluate the trade-off between modifying an existing component model (and component) to match the 

current system model (and system) versus modifying the system model (and system) to enable reuse of 
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existing component models (and components).  ACVIP plans should reflect the overall project plans for 

the system and components themselves.   

Three different patterns for model-based descriptions are described below. 

3.3.1 Describe Models Using AADL Types 

The simplest pattern to specify a desired model is an AADL type declaration provided as part of the 

description.  The desired model is an AADL implementation that conforms to that type declaration.  AADL 

type declarations may declare features (such as input and output message ports), flows, properties, 

operating modes, and annex declarations (such as error and functional behaviors) to which an AADL 

implementation for that type must conform.  The type also unambiguously identifies the system 

boundary and its interface to its environment of use.   

As a general guideline, customers should not override properties declared in implementations, and 

suppliers should not override properties declared in types.  The keyword constant can be used to prevent 

inadvertent property overrides.  Configuration parameters for configurable components can be treated 

as properties visible at the interface and declared in the type using non-constant property association 

declarations. 

Example: A software component supplier is to provide a model that can be virtually integrated into 

an SRR model that will support a preliminary analysis of software memory loading and end-to-end 

latency requirements.  The AADL type declarations shown in Figure 2 Type declaration included 

with a description of a desired implementation model are developed by the system integrator and 

included with the description given to the supplier of this component model. 

 

Figure 2 Type declaration included with a description of a desired implementation model 

data Sensor_Data 
-- Details omitted in this example 

end Sensor_Data; 
  
data Track_Data 

-- Details omitted in this example 
end Track_Data; 
  
system Desired_Component 
-- The implementation model shall not refine any data types 

-- of features or override any property values declared below. 

features 
sensed_objects: in data port Sensor_Data; 
fused_tracks: out data port Track_Data; 

flows 
sensed_to_track_latency: flow path sensed_objects -> fused_tracks 

{Latency => 0ms .. 100ms;}; 
properties 

Memory_Size => 5 MByte; 
end Desired_Component; 
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This simple AADL type pattern may still be used in some cases where complex interactions with the 

environment are part of the requirements.   Contracts, assume-guarantee, or input/output conformance 

techniques can encode certain behaviors of the environment as well as required responses from the 

desired system.   AADL Behavior Annex declarations may be used where the ACVIP Management Plan calls 

out appropriate conformance guidelines and usage [24]. 

3.3.2 Describe Models Using AADL Environment Models 

A second pattern is to explicitly model elements of the environment in which the desired system will be 

used.   In this pattern, the AADL system used to model the system being developed is an AADL 

subcomponent within a larger AADL system declaration.  Sometimes this outer environment model 

represents a physical environment, and elements such as crew and external objects are represented as 

subcomponents.  AADL abstract components should be used for objects that fall outside the scope of 

AADL semantics, such as crew members.   

Example: Figure 3 Environment model included with specification of model to be delivered 

illustrates a model that includes a system subcomponent for the system being developed (the 

mission_system) together with abstract subcomponents that represent crew, an external 

network, and terrain that are not part of the system but are necessary to specify interactions that 

the system must support. The overall system environment is declared using the abstract rather 

than the system category. 

An environment description model should be usable as a virtual test harness by suppliers of component 

models.  A supplier of a component model should be able to perform a local virtual integration of their 

component model into the provided environment model.  The environment description model should 

declare flows, properties, etc. that identify the analyses that should be supported by the delivered 

component model.  Many analyses depend on information from the environment-of-use of a subsystem 

or component.  Detailed guidelines for different analyses are found in Define Model Content Needed for 

Analyses.   It should be possible for a supplier to run required analysis tools on this local virtual integration, 

even though the results will not be as complete or certain as those to be obtained by the model integrator 

during the system model virtual integration task. 



 
30 

  

Copyright, 2021, Adventium Labs. 

 

Figure 3 Environment model included with specification of model to be delivered 

3.3.3 Describe Models Using a Template 

A third pattern for model-based descriptions is a pattern or template model to be elaborated to create 

the desired model.   Both of the above patterns (type and environment) may be viewed as starting points 

for model elaboration.  More complicated scenarios are also possible, such as declaring a partial AADL 

implementation that is to be extended and refined by the to-be-delivered model. Guidelines for 

elaborating models may be found in Abstraction, Elaboration, and Conformance. 

AADL allows a property declaration in one part of a model to override properties and other characteristics 

of model elements that they reference or incorporate.  However, in some cases declarations in a model 

are specifications that should not be overridden in supplier models. Some properties in supplier models 

are not configurable by (should not be changed by) the virtual integrator.  It is recommended that the 

AADL constant keyword be used in property value associations to explicitly restrict re-definitions of such 

property values.  Property associations declared in types that specify requirements to suppliers that 

should not be modified by suppliers should be declared constant.  Property associations declared in 

implementations that are fixed design choices made by suppliers and not configurable by users should be 

declared constant. ACVIP plans should describe what may be overridden when model elements developed 

in one task depend on model elements developed in another task. 

Example: The type declaration in Figure 2 Type declaration included with a description of a desired 

implementation model includes constant property associations and a comment that the supplier 

model shall not override any property values or refine the classifiers of any features declared in 
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the AADL component type declaration – they are specifications to which the supplier must 

conform. 

3.3.4 Provide Common AADL Libraries 

Property sets and libraries of common elements to be used by multiple model suppliers may also be useful 

to include with descriptions of models to be delivered.  This is particularly true where the system is to 

conform to specified standards.  Where a system is required to conform to a standard at a key interface, 

the model of that system should capture that requirement. 

Example: The AADL ARINC 653 Annex defines a standard way to model ARINC 653 compute 

modules.  This annex defines a standard AADL property set for ARINC 653 standard properties.  

This annex provides a modeling pattern to be used for the architecture of an integrated ARINC 653 

compute module.  Tools developed by different vendors to support ARINC 653 modeling will all 

recognize the same properties and patterns.   ARINC 653 process and partition models developed 

by different suppliers will all virtually integrate into an ARINC 653 compute module model. 

Example: A Mission System Integrator (MSI) is procuring software applications from several 

subcontractors.  These applications are to be hosted on a common computing platform provided 

by the MSI.  The MSI develops an AADL package that declares a platform execution environment 

model at a sufficient level of fidelity that software suppliers can bind their models and run analyses 

to do static checking of interface consistency and resource loading.  This package is provided to 

suppliers as part of the descriptions for models they are to deliver for PDR. 

3.4 Modularize Model Text and Diagrams 
Models themselves are modularized into declarations, files, folders, etc.  This is not the same thing as the 

modularization of the system into an assembly of components – that is captured in a model, but a model 

also has its own structure as a set of text strings and diagrams and files.  The modularization of a system 

is described by an instantiation of a selected AADL system implementation declaration.  ACVIP plans 

should address how the model text and diagrams are modularized for separate development and delivery 

and virtual integration. 

AADL textual representation should be used for model delivery.  The textual grammar is what is 

standardized.  The AADL textual grammar and structure allow many methods and tools used for software 

source code change and configuration management to be applied to AADL models.  Methods and tools 

for source code delivery and sharing can also be adapted for AADL text.  The current AADL convention is 

that different AADL Integrated Development Environments (IDEs) may provide different graphical 

viewpoints (different types of diagrams) obtained by round-tripping from the AADL textual 

representation. 

AADL text may be modularized using the following language and development environment features. 

• AADL packages (including property sets) are collections of type, implementation, and property 

definition declarations.   The language definition requires all type, implementation, and property 

declarations to appear within a named AADL package.  Packages may depend on other named 
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packages.  Declarations in one package can extend, refine, and add properties to type, 

implementation, and property declarations found in other packages.  A package or property set 

should be the smallest unit of model development for the smallest unit of development task 

break-down.   

• Development environment files are the smallest unit that can be stored in a repository, exchanged 

between developers, and managed in a change and configuration management system.  Each 

AADL package should be stored in its own file.  

• Development environment projects are sets of related inter-dependent packages, property sets, 

files and folders.  Many AADL tools, change and configuration management tools, and delivery 

tools and procedures, define and support a project concept, although with varying capabilities 

and terminology.  Development environments should allow a project to have information 

dependencies on other projects.   A project is the recommended unit for model delivery. 

• AADL system implementation instantiations are representations of the structure and behavior 

of a specific system.  A system instantiation can be automatically generated into a file from a 

selected system implementation declaration found in a collection of packages and property sets 

that have no unsatisfied external dependencies.   A system instantiation file is a common unit 

that is input to a tool for analysis.   System models that are to be subjected to individual analysis 

should have an identified AADL system implementation declaration that can be instantiated. 

• Different change and configuration management methods and tools may have differing 

conceptual models and capabilities (e.g., distributed repositories, change sets).  Where the 

involved parties use different methods and tools, the ACVIP Management Plan should describe 

how versioning and configuration information is to be exchanged along with the models. 

ACVIP plans should establish naming conventions for deliverable units (e.g., packages, files, folders) as 

needed.  These are only needed for elements of the model that will be referenced from other models 

during virtual integration or for change and configuration management purposes. 

The recommended default unit of model development and delivery is a set of AADL packages organized 

as a set of one or more development environment projects.   Individual AADL packages may be 

appropriate for some purposes. 

Different development environments may add files to projects or assume additional usage conventions.   

This applies to AADL Integrated Development Environments (IDEs) used for model development, 

versioning conventions used by different organizations, and change and configuration management tools.  

AADL projects should be structured to be as robust as possible to such differences.  ACVIP plans should 

identify differences that do have an impact and how they are addressed. 

When defining model development and delivery units, ACVIP planners should take into consideration the 

following issues. 

• Performers responsible for capturing specific data in models 

• Temporal sequencing of data availability and model development and use 

• Project plan dependencies between tasks and their input and output models 
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• Analyses that require a system instance to be generated 

• Information dependencies and relationships between models 

• Intellectual property and information security boundaries and restrictions 

• Model delivery and sharing milestones and procedures and methods 

• Model versioning conventions and change and configuration management methods 

• Alignment with system and component versioning and change and configuration management 

3.5 Address Access Restrictions 
Information access restrictions must be considered when modularizing model content for delivery.  

Sufficient access rights must be provided to the model integrator by all component model suppliers to 

perform the planned virtual integration and analysis tasks.    

Architectural models should primarily focus on interfaces, externally observable behaviors, and 

interactions between components.  Information about component internal designs should be minimized.  

Among other benefits, this simplifies dealing with access restrictions, which are more likely to apply at the 

detailed design rather than the architectural level-of-abstraction. 

Because a package is the smallest unit of model exchange, public and private sections within the same 

package should not be used to satisfy data access restrictions. When a model integrator is developing 

model descriptions for model suppliers, a goal is to reuse elements of the system model to produce model 

descriptions for model suppliers as discussed in Describe Models to be Developed and Delivered.  It may 

be necessary to derive different sanitized model descriptions for different model suppliers due to 

information access restrictions.  Where this is necessary, the structure and modularization of the system 

model should take this into consideration so that deriving and managing sanitized model descriptions is 

easier.  Identify Change and Configuration Management Procedures should include these derived 

component model descriptions. 

A model integrator may have permission to access data from component model suppliers but be 

prohibited from sharing component models from one supplier with another supplier.  The model 

integrator may not allow portions of the integrated model to be seen by component model suppliers.  The 

overall set of models should be modularized so there is little or no direct dependence between models 

from different suppliers. Note this situation complicates collaborative debugging of the virtually 

integrated models as discussed in Plan Virtual Integrations. 

A component model provider may be required to support certain analyses of the virtually integrated 

system model but not want to share certain details required for that analysis.  A method that can 

accomplish this for certain kinds of analysis is for the component model provider to develop two models, 

an internal fully detailed model and a sanitized component model delivered for virtual integration.   The 

component model developer performs an analysis on the fully detailed model and then annotates the 

sanitized component model with component analysis results that are needed to run that analysis on the 

overall virtually integrated system model.  See Abstraction, Elaboration, and Conformance for a discussion 

of abstraction relations between models.  This approach requires an analysis tool that supports this form 

of compositional or gray-box analysis. 
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Example: A Mission System Integrator (MSI) will conduct agile continuous virtual integration process 

with multiple suppliers.  The MSI directs each supplier to establish a model repository that can be used 

to securely exchange models between MSI and supplier.  The MSI will Describe Models Using a 

Template plus other documentation for each supplier by downloading that material to each supplier’s 

repository.  Each supplier sees only the template-based description of the model they are to deliver.   

Using modifications of tools commonly used for continuous software integration testing, the MSI 

stands up a continuous virtual integration server that automatically pulls models from each supplier’s 

repository, virtually integrates them into the MSI’s overall architecture model, and applies a selected 

set of analysis tools.  Only the MSI has visibility to all supplier models and the overall system 

architecture model.  The MSI and their suppliers use a collaborative agile process in which all parties 

continuously update their models.  The MSI configures the virtual integration server so that dashboard 

displays and error notices appropriate for each supplier are visible to that supplier. 

3.6 Identify Relations Between Models 
ACVIP uses many models and work products that have a variety of relationships to each other.   ACVIP 

plans should identify important relationships between the multiple AADL models and other work products 

and how those relationships are captured, managed, and verified.  This subsection presents 

considerations and guidelines for four important classes of relations between models. 

Many sections of this handbook cite the use of AADL extends and refines declarations, and property 

inheritance and override language features, to manage a variety of relationships in large, complex, 

evolving virtual integrations of multiple models from multiple sources.   Such models typically consist of 

many projects and packages.  Selection of an AADL Integrated Development Environment (IDE) and user 

training should take into consideration the cross-referencing capabilities for these language features. 

3.6.1 Dependence 

In this handbook the singular “model” refers to any group of AADL packages and property sets that 

satisfies the syntactic requirements of the AADL standard.  A model that is syntactically correct may still 

have semantic dependencies on other models.  The set of models input to an ACVIP task must typically be 

syntactically correct and semantically self-contained -- that set must collectively satisfy all the standard 

AADL legality rules, and it must be possible to instantiate system implementations declared in that set. 

A dependency of AADL packages or property set on another must be explicitly declared at the beginning 

using a with declaration.  Almost all AADL tools will require that package dependencies be satisfied and 

will perform legality checks across package and property set boundaries.  A project is a set of AADL 

packages.  A dependency exists between two projects if one project contains a package that with’s one 

or more packages or property sets in the other project.  An AADL model is a set of one or more AADL 

projects.  A model is dependent on another AADL model if it references things declared in that other 

model.  

A model developed by one organization may depend on models developed by other organizations.  ACVIP 

Plans should identify these dependencies and explain how they are to be satisfied.  
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The AADL language definition allows circular dependencies between packages, but not all development 

environments may support circular dependencies between projects.  Circular dependencies between 

projects should be avoided unless there is a special need and all participants’ tools support this. 

Example:  A program plans to use a shared data model to specify message content and layout 

across multiple suppliers.   ACVIP plans state that all AADL models developed before the delivery 

of that shared data model should not explicitly identify an AADL data type in declarations of 

component input or output message ports (AADL permits this sort of partial declaration).  AADL 

extension and refinement declarations should be used to add this information later when the data 

model package becomes available. This plan satisfies dependencies by limiting declarations so 

they do not create unsatisfiable dependencies until that information becomes available. 

Example: A program plan calls for a supplier to develop a component model that interfaces with 

other component models to be provided by other suppliers.  ACVIP plans state that the customer 

shall provide as part of the model-based description to each supplier a mock model of the 

interfaces to other supplier’s components sufficient to pass the semantic dependency rules of 

AADL.  This plan satisfies dependencies by providing mock models that are sufficient for 

component model development. 

The type compatibility rules of AADL distinguish between the same type and an extension of that type, a 

distinction that may be meaningful for type-checking tools.  A renames declaration is needed to refer to 

the same type across package boundaries.  Where an AADL type declaration appears in a different 

package from its AADL implementation declaration(s), a reference to an external AADL type should be 

made using an AADL renames declaration rather than by declaring a local AADL extension of the external 

type unless there is a specific reason to introduce a new extension of that type.   

3.6.2 Abstraction, Elaboration, and Conformance 

When one model is used as a specification for a system, and there is a more detailed model that does or 

will exist for that same system, then the more detailed model should be consistent with or satisfy the less 

detailed model.  One case where this will occur is successive virtual integrations at SRR, SFR, PDR, and 

CDR.  The model used at SRR will be less detailed than the one used at PDR, which in turn will be less 

detailed than the one used at CDR.  All three of these are models of the same to-be system.  They just 

have different degrees of information content and uncertainty.  Another case this will occur is when an 

abstract model is included as part of the specification for a more detailed model to be acquired from a 

supplier, as discussed in Describe Models to be Developed and Delivered.  In many cases the more abstract 

model is intended to capture requirements that must be satisfied by the more detailed one. 

In this handbook, the less detailed and more uncertain model will be called an abstraction of the more 

detailed and certain one.  The more detailed and certain model will be called an elaboration of the less 

detailed and more uncertain one.   Intuitively, when model E is an elaboration of model A, then E should 

satisfy or be consistent with or conform to A in some sense.   
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An abstraction is a model A that has some, but not all, of the information in another model E and where 

a class of properties that are true of A are also true of E.  Sometimes A is developed first using limited 

available information and is subsequently changed into E as additional information becomes available.  

Sometimes the more detailed model E is developed first and then A is developed because A enables more 

tractable analysis of a certain class of properties.  

The key idea in the preceding paragraph is that E conforms to A when properties of interest that are true 

for A are also true for E – E satisfies every requirement that A does.  ACVIP uses virtual integration 

analysis to provide assurance that the desired properties for A still are true for E as the model is 

elaborated during development.   An ACVIP Plan should identify analyses that are to be performed across 

all reviews, with increasingly detailed and certain analysis results, as one way to define what it means for 

successive models to conform with preceding models. 

A second way to declare conformance requirements is to use AADL extends and refines declarations. 

Formal conformance relations are recommended where feasible and reasonable, as their rigor avoids 

ambiguity and can enable automated verification [25].  Where used, ACVIP plans should identify how a 

conformance relation is (to be) defined.  The plan should identify how compliance with that relation is to 

be verified.  There may be multiple conformance relations required between a pair of models. 

Example: An AADL CDR model includes an abstract state machine specifying how a type of 

component responds to different kinds of arriving messages.  This is specified using language 

features from the standard AADL Behavior Annex [26].  ACVIP plans state that all component 

implementation models developed by suppliers and all models of environments into which they 

are virtually integrated shall satisfy an input/output conformance relation1, where the formal 

definition of the input/output (I/O) conformance relation shall be provided with the AADL model 

[24].  ACVIP plans state that a sample of components shall be tested before delivery to assure I/O 

conformance of the as-built components with the AADL type and behavior specification, where 

the test set shall achieve a given model-based test coverage metric. 

A model is also an abstraction of the system that it describes.  This meaning of conformance is discussed 

in Assure System Conforms to Models. 

3.6.3 Layering, Extension, and Refinement 

AADL has language features that support two important kinds of relations between models: extension 

with refinement to support elaboration of earlier models by adding more information; and bindings to 

support layered architecture models.  An advantage of using these language features is that syntactic and 

 
1 I/O conformance relations can be applied when a specification model and an implementation model take the form 
of state machines or transition systems whose events are classified as either input or output.   The specification can 
be viewed as a game played between the component and its environment. An input move by the environment may 
change the state of the component, the component may only respond with an event allowed in its current state, 
and some of the allowed output moves may also change the component state. 
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legality rules of the language provide some assurance of conformance between different layers or degrees 

of abstraction as an overall system model increases in scope and detail. 

Figure 4 Extension with Refinement Adds Information to a Type (or Implementation) illustrates how 

extension with refinement can add new information to existing models in a way that is consistent with 

AADL legality rules.  The system NavLogical is an AADL type (interface) declaration that is subsequently 

extended to system NavPlatform by refining the features to declare details about groups of messages sent 

and received and to change property values declared in the parent type.  The AADL standard specifies 

various forms of refinements that can be applied to different kinds of feature and subcomponent 

declarations when they are refined in an extension. 

This figure illustrates two ways in which property associations can be declared: in a properties section of 

a type or implementation declaration (the example here is the Memory_Size property association); or as 

a clause in a feature or subcomponent declaration (the example here is the Data_Size property 

association).  AADL rules for overriding property values give higher precedence to property associations 

on feature and subcomponent declarations than to property associations in a type or implementation 

properties section.  If a subcomponent declaration has an inherited property association and is refined to 

have an implementation with a property association, the inherited property association will override the 

one in the implementation.    To avoid possible confusion, either one pattern or the other (declare 

property associations on features and subcomponents; or declare them in properties sections) should 

consistently be followed for a given property.  Property associations in property sections of types and 

implementations are more flexible as models become larger.  
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Figure 4 Extension with Refinement Adds Information to a Type (or Implementation) 

Figure 5 Layering is a Common Pattern in Architectures and their Models illustrates how binding 

properties can be used to model layered architectures.  This example illustrates the use of the 

Function_Binding property to allocate abstract and system types used to denote functions to process 

and data software components that provide those functions.  The Processor_Binding, 

Connection_Binding, and Memory_Binding properties can subsequently be used to bind these software 

components to virtual resources in an execution environment that are themselves bound to physical 

hardware elements.  The layers in this figure illustrate the concept; the layers in a model should be 

selected based on the needs of the individual project. 

system NavLogical 
     features 
          inputs: feature group; 
          outputs: feature group  
                   {Data_Size => 1 Kbyte;}; 
     properties 
          Memory_Size => 10 MByte; 
end NavLogical; 

 feature group NavIn 
  -- details omitted 
 end NavIn; 
 feature group NavOut 
  -- details omitted 
 end NavOut; 
  
 system NavPlatform extends NavLogical 
  features  
   inputs: refined to feature group NavIn; 
   outputs: refined to feature group NavOut 
                            {Data_Size => 10 Kbyte;}; 
  properties 
   -- Include a DTED RAM cache. 
   Memory_Size => 100 MByte; 
 end NavPlatform; 
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Figure 5 Layering is a Common Pattern in Architectures and their Models 

Consideration should be given to structuring layered models so that different layers can be developed 

independently and then virtually integrated by adding an appropriate set of binding properties from one 

layer to another.  This is another useful pattern when describing models to be procured from different 

groups for subsequent virtual integration. 

Figure 6 Implementation, Extension and Refinement for Layered Architectures illustrates how these 

language features can also be used when a layered architecture model is developed.  Instead of binding 

elements declared in one layer to elements in another layer, an element in one layer can be implemented 

using subcomponents that are considered to be in another layer.  Extensions and refinements may also 

be assigned to different layers than the layer in which the parent elements are assigned.  The choice 

depends on the nature of the project.  For example, if there is a relatively straightforward mapping of 

functions to software components, then implementing extensions and refinements of the original 

elements used to model functions is likely the simpler approach.   

Decisions about the modularization boundaries at which extension and refinement are used should be 

made carefully.  Excessive use of these features can make a model unnecessarily complex to understand 

and review because the information that applies at the more detailed levels of modeling is spread across 

one or more parent declarations.  Consideration should also be given to the restrictions on changes that 

can be made using refinement declarations due to AADL legality rules.  For example, occasionally it may 

be necessary, due to restrictions on refinement, to render an inherited flow implementation ineffective 

by reassigning properties to benign values and then declare a new one. 
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It is recommended that functional decomposition eventually be performed to a level-of-detail where 

individual lowest-level functions are allocated to a single component, so that the implementation or 

realization of a lowest-level function is not split across multiple components. 

When layered architecture models are used, and portions that are to be virtually integrated appear in 

different layers, ACVIP planners should be careful to describe the architecture layers, the layer to which 

different procured models are assigned, and the language features used to interface between different 

layers. Models should be structured for delivery so that binding and extension declarations are made in a 

separate package by a different group as needed.  Note that layered models may be incrementally 

delivered.  That is, an ACVIP Plan may call for initial delivery of layers with subsequent delivery of more 

detailed models of the layer. 

 

Figure 6 Implementation, Extension and Refinement for Layered Architectures 

3.6.4 Conceptual, Logical, and Platform 

A number of standards use the terms conceptual, logical, and platform to refer to different levels of 

abstraction or detail in a model.  The AADL standard does not.  Although alignment with AADL 

categories may be reasonably intuitive in some cases (e.g., abstract components and abstract feature 

features naturally align with a conceptual level-of-abstraction), in other cases this may vary depending 

on the intended model use and detail (e.g., connection may align with any of conceptual, logical, or 

platform depending on context and details such as the connected features, data types, and bindings).  

Planners should determine if alignment with conceptual, logical, and platform terminology is needed for 

a project and, if so, provide guidelines for this alignment. 
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3.6.5 Sources of Truth 

A model may contain data that is redundant with or derived from data in other models.  ACVIP plans 

should identify which models are considered the “single source of truth” for such data.   Ideally other 

models will simply reference the single source of truth for a particular datum.  There may be a more 

complex relationship between the single source of truth model and other models that include somewhat 

redundant information.  Any of the relationships discussed in the following paragraphs may be used for 

this purpose. 

Example: A model developed for SRR declares mass budgets for components of a system.  ACVIP 

plans state that any mass data in subsequent more detailed models must fall within these budgets.  

The plans state that the “single source of truth” for mass properties data used for CDR analysis 

shall be the 3D Computer Aided Design (3D CAD) solid models.  Any mass properties appearing in 

the AADL CDR model for a hardware component should match the values obtained by performing 

a mass properties analysis of the corresponding version of the component solid model.  The plans 

state that model consistency analysis shall be performed to verify that specific mass properties in 

all AADL models fall within the budgets declared in the SRR model and that these values are 

equivalent (within allowed error bounds) to the mass properties obtained from the solid model. 

Information may be captured in multiple models, especially models in different languages.  For important 

pieces of information, the plan should identify which model is the single source of truth with which other 

models should be verified to conform.  Plans may need to take into account differences in how a piece of 

information is declared in different models.  For example, an estimated value declared as a scalar in one 

model may need to conform to a budget declared as a range in another model. 

Complex relationships may exist between declarations within a single system model that resulted from 

virtual integration of multiple components.  Describe Models Using AADL Types discusses the need to 

control which properties can be overridden and which not by different roles.  More complex relationships 

may exist due to Abstraction, Elaboration, and Conformance and Mixed-Fidelity Modeling and Analysis.  

For example, a property in a model description may establish a range or budget for properties to be 

declared in the model supplied to satisfy that description.  Care should be taken to clarify any such detailed 

relationships between properties in different models or parts of a model. 

Consistency is used in this handbook to refer to any rigorously defined relationship between models that 

has been identified in ACVIP plans but does not fall into the previous categories of model-to-model 

relationships.  The ACVIP plan should cite definitions for any additional consistency relationships and how 

those relationships are used to carry out ACVIP tasks. 

Example: An AADL PDR model declares a logical structure for the hardware of an embedded 

computer system using AADL concepts such as processors, buses and memories.  A 3D CAD solid 

model of the air vehicle includes parts, assemblies, and mating constraints for circuit cards, 

chassis, wiring harnesses, and electrical connections.  The logical resources and connections in the 

AADL model must be consistent with the assemblies and electrical connectivity in the solid model. 
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Example: A Simulink model declares sampling rates for blocks in a control algorithm specification.  

Code generated from this model is modularized for execution by different periodic threads that 

are dispatched at the specified sampling rates. The set of threads declared in an AADL CDR model 

of this software component must be consistent with the Simulink sampling rates and control code 

modularization.  The plan states that the Simulink model is the “single source of truth” for 

sampling rates. 

3.7 Identify Variation Points, Configurations, and Dynamic Behaviors 
There are several situations where different kinds of configurations and behaviors may need to be 

captured in a single AADL model. 

• A model may declare multiple possible configurations in order to describe a family of related 

systems across multiple acquisitions or to declare alternatives for trade-studies.  The model is 

configured by choosing variants for variation points identified in the model. 

• Components delivered by suppliers may need to be configured by the system manufacturer 

during system integration or during field maintenance.  The model declares how components are 

to be configured (what configuration data needs to be applied to each component). 

• A delivered system may undergo run-time architectural reconfiguration during mission planning 

and preparation or mission execution.   

• A delivered system and its components exhibit a variety of behaviors during use.  Users may 

choose between different system functional modes at run-time. 

This handbook distinguishes these situations, and this section provides modeling and analysis guidelines 

for each. 

3.7.1 Configurable Models and Variation Points 

A configurable model contains variation points, places where a declaration can be modified in a defined 

number of ways.  Given a choice for every variation point in a model, each selected from a declared set of 

alternatives for each variation point, a single modeled system instance can be generated for a specific 

system configuration.  This represents a development-time configuration to select among alternative 

systems, not a possible run-time reconfiguration.  The final system conforms to a single selected model 

configuration.  A configurable model can be viewed as a function that maps a set of choices for a set of 

variation points to a specific AADL system instance model.  Configurable models support product line 

management and trade space exploration, for example. 

Suitably designed trade studies can be a useful way to assess the degree to which MOSA objectives are 

met.  Upgrade scenarios can be used to guide the identification of variation points.    The identification 

and creation of model variations and virtual integration exercises may be as informative as the analyses 

performed, as those are virtual system modification exercises. 

It is rarely the case that all possible combinations of variation point choices result in an acceptable system 

configuration.  The set of analyses that ACVIP planners decide to perform on a model implicitly constrains 

which combinations of choices are allowed (pass all analyses). A configurable model may also explicitly 

define constraints involving multiple variation points, which also has the effect of ruling out alternatives 

that appear in the cross-product of all possible variation point choices. 



 
43 

  

Copyright, 2021, Adventium Labs. 

There is no standard way in AADL to explicitly identify which declarations are intended to be developer-

selectable variation points (and which are not) and declare allowed sets of alternatives for variation 

points.  This should be documented, e.g., by defining specific modeling conventions in the plans, in 

comments within the models.  A number of standard AADL declarations may be identified as variation 

points.  Some primary candidates are: 

• Property value associations with an identified set of alternative values 

• Subcomponent declarations with an identified set of alternative types or implementations 

• Subcomponent declarations with identified sets of alternative actuals for prototype parameters 

• Array declarations with an identified set of alternative index ranges 

• Multiple system implementations that could be instantiated 

Variation points and their associated sets of alternative choices should be explicitly identified in the 

model.  There may be configuration choices that cannot be easily defined using the above methods, such 

as alternative patterns in an identified set of connections.  This could be done using defined comment 

formats.  Macro and language extension methods and tools could be applied.  In all cases, it should be 

possible to unambiguously preprocess such models by an appropriate method or tool to generate a legal 

AADL model for a selected configuration.  This generated model will typically have a single system 

implementation declaration used to create an instance model for that system configuration. 

AADL mode declarations should not be used to specify development-time configurable models. They 

should be reserved to specify possible dynamic re-configurations of fielded systems as defined in 

Configurable Systems.  AADL Behavior Annex declarations are similarly reserved to specify run-time 

behaviors as described in Alternative Functional Behaviors. 

Example: Developers are trying to decide between an architecture that uses three large enclosures 

with point-to-point very-high-speed connections, versus an architecture that distributes a larger 

number of smaller enclosures throughout the vehicle and uses a switched network.  An AADL PDR 

model is created that contains declarations for both kinds of computing platforms. 

To explore the trade space, developers use a trade space exploration framework that integrates 

several tools.  One tool interprets property associations and certain forms of subcomponent 

classifier declarations in an AADL model as variation point declarations, where the property type 

and the set of available implementations for a classifier define sets of alternative choices.  A trade 

space exploration tool uses Monte-Carlo methods to generate combinations of choices.  For each 

choice, a tool is applied to the configurable AADL model to produce a system implementation 

instance model for that set of choices.  Weight analysis, power analysis, utilization analysis, 

reliability block diagram analysis, and fault tree analysis tools are automatically applied.  A trade 

space visualization tool inputs analysis results for all configurations and provides interactive 

visualizations of the trade space Pareto frontier to the developers. 



 
44 

  

Copyright, 2021, Adventium Labs. 

3.7.2 Configurable Components 

Some components require the system integrator to provide configuration data for that equipment.  Field 

maintenance may sometimes reload configuration data.  Configuration of each individual piece of 

equipment may be performed in a number of ways, such as switch settings or installing a configuration 

file. 

The use of standard AADL properties to specify component configuration data should be very carefully 

assessed to ensure the purpose is consistent with standard AADL semantics for those properties.  

Otherwise new properties should be defined for that type of component in an AADL property set.  Where 

the configuration data is complex, a property can name a file that contains the configuration data.  Where 

complex configuration data includes information needed for a desired architectural analysis, a user-

defined AADL annex can be developed for that type of component.  The model should be documented to 

identify which property or annex declarations specify configuration data to be applied to components 

during manufacture.   

ACVIP plans should describe how alternative component configurations are to be handled during virtual 

integration analysis. 

3.7.3 Configurable Systems 

AADL operating modes should be used to specify how a system may undergo architectural 

reconfigurations during use – changes during operation to the set of subcomponents or connections or 

properties that may affect architectural qualities such as timing or safety or security.  These may occur 

during maintenance, mission planning and preparation, or during mission execution.  An AADL operating 

mode should not be confused with a functional mode, to be discussed in Alternative Functional Behaviors. 

In AADL type and implementation declarations, AADL modes may be declared together with events that 

cause transitions between modes during system use.  The collection of all AADL mode declarations in all 

components together with event connections between components forms a concurrent state machine 

model, where transitions between operating modes occur when specified events occur.   Many AADL 

declarations have a modes clause to specify whether they apply or how they apply when a component is 

operating in a declared subset of its modes.  AADL modes should be used to specify how the architecture-

level behavior of a system may change after that system has been fielded.  These alternative behaviors 

are called system operational modes rather than model configurations. 

Because AADL modes declare changes to operational behavior, mode declarations affect many 

architecture analyses.  Because the set of all mode declarations forms a concurrent state machine model, 

state space explosion (or in this case mode space explosion) can easily result in intractable analysis for 

complex patterns of potential operational modes.  Mode transitions often have transient semantics that 

need to be taken into account during analysis, which complicates and may limit the results of certain kinds 

of analysis.  

Example: A mode transition that activates and deactivates sets of threads is not an instantaneous 

event.  The mode transition will occur over an interval of time during which some threads complete 

and undergo finalization and other threads undergo initialization and become ready for 
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dispatching.  The timing and source and destination of message connections may vary during the 

mode transition interval. 

ACVIP planners and model developers should identify rules to limit the complexity of AADL mode 

declarations as needed for the planned analyses.  Consider the capabilities of planned tools to perform 

multi-mode analysis.  Limit the size and complexity of mode state machines (number of modes, number 

of transitions).  Limit the extent to which different mode transition diagrams within different components 

interact with each other.  Limit the extent to which declarations are mode-dependent.  Where complex 

behaviors that are specific to a particular component need to be specified, features of the AADL Behavior 

Annex may be preferable. 

3.7.4 Alternative Functional Behaviors 

The term “functional mode” will be used in this handbook to refer to alternative sets of functional 

capabilities that can be provided by the system to its operators [27].   Functional modes would be 

described in operator manuals, for example.  Care must be taken to distinguish this from AADL system 

operating modes, which refer to run-time architectural configurations within the system itself.  AADL 

operating modes may be one language feature used to model functional modes, but functional modes 

may also be modeled using other kinds of AADL behavioral modeling declarations. 

The term “component state” will be used in this handbook to refer to the internal data state of 

components, such as the values stored in memory at any point in time for a software component.  The 

AADL Behavior Annex defines language features that should be used to model internal component 

discrete states and state changes [26]. 

Common measures of dependability are reliability, availability, and integrity [28] [29].  To enable analysis 

of these metrics, behaviors such as faults and conditions such as erroneous or failed must be modeled.  

The AADL Error Modeling Annex defines language features that should be used to model these kinds of 

behaviors [30]. 

High-level requirements such as those for functional modes and fault management may result in an 

architecture model that uses a combination of these three (AADL system operating modes, AADL Behavior 

Annex, AADL Error Modeling Annex).  As with operating modes, ACVIP planners and model developers 

should identify rules to limit the complexity of models that mix these language features so the planned 

analyses are tractable.  Consider the capabilities of available tools to perform such analysis.  Limit the size 

and complexity of individual behavior declarations.  Limit the interactions between behaviors declared in 

different behavioral modeling sub-languages. 

3.8 Identify Change and Configuration Management Procedures 
In an acquisition program that involves multiple models and organizations, different organizations are 

likely to use different processes and tools to name, store, and manage versions and configurations of 

models, analysis and test results, and other associated data.  ACVIP plans should address processes and 

methods for common naming, versioning, and configuration management to use when exchanging model 

information between involved organizations.  Configuration management may also need to be applied to 
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selected modeling and development environment tools and equipment.  This section identifies situations 

likely to be encountered and issues that should be considered. 

ACVIP plans should take advantage of existing methods and tools used for software source code change 

and configuration management where suitable, as discussed in Modularize Model Text and Diagrams. 

In a virtual integration process, model information will be produced and consumed by different 

organizations.  This may be accomplished in a number of ways.  It may be accomplished by delivery of 

models, or by using a shared model repository, or by using a model server that provides controlled access 

to the model data needed for a specified purpose.  The combination used will depend on the 

circumstances of each project. 

ACVIP plans to produce and manage traceability, conformance, and consistency data should be 

considered when identifying methods for naming, accessing and managing shared model data and the 

tools used to create and analyze the model.  Stakeholder needs for information discovery should be 

considered.  The naming, versioning, and configuration management methods must support the 

development and verification of required traceability, conformance, and consistency data. 

Example: The ACVIP plan states that the “single source of truth” mass data for to-be-developed 

equipment in AADL CDR models shall be taken from the mass properties analysis of a solid model 

of that equipment.  The version naming and configuration management methods identified should 

assure that mass data appearing in a given version of an AADL model is the same as that produced 

by mass properties analysis of the appropriate version of the corresponding solid model. 

There should be common processes and methods to unambiguously name models, model versions, and 

configurations of single and multiple models, across all organizations involved in the development or use 

of a common set of models.  The tools and environment that the models were built and analyzed with 

may also need to be tracked.  These common processes and methods should be identified at a level of 

detail sufficient for the acquisition program. 

Example:  Developers in an acquisition program are encouraged to maximize use of commercial 

catalog parts.  The ACVIP plan calls for models of commercial parts to be named and versioned as 

described in the commercial catalogs. 

Example: Two organizations will collaboratively develop a model using an agile development 

process.  One organization will host a shared repository, shared configuration management 

system, and shared issue and task tracking system.  Changes to common files will be managed 

using optimistic conflict resolution methods.  Individual members of the teams will make direct 

contact with each other as desired, but all substantive exchanges should be captured in the shared 

issue and task tracking system to support project management and post-project process 

improvement studies. 

Configuration management may need to comply with other standards or regulatory requirements. 
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Example: Configuration management obligations are identified in RTCA DO-178C.  A Software 

Configuration Index is one of the three always-required deliverables identified in that handbook. 

Models may contain restricted information.  Change and configuration management plans should take 

into consideration the issues discussed in Address Access Restrictions. 

3.9 Plan Virtual Integrations 
Virtual integration is an activity that requires input models, tools, skilled personnel, and time. 

A major goal of ACVIP is to detect defects early.  The ACVIP Management Plan should anticipate that 

delivered models will not successfully virtually integrate and pass all planned analyses at the first attempt.  

Virtual integration should be planned as a collaborative debugging task that is led by the system model 

integrator and supported by the component model suppliers.  Schedules and the availability of technical 

resources should be coordinated and aligned.   

ACVIP planners should consider methods and tools to support distributed collaborative engineering.  For 

example, models may be exchanged between a model procurer and a model supplier using a shared 

repository. 

Example: A system integrator provides controlled access to a common repository by all component 

model suppliers.  The ACVIP Management Plan identifies software engineering practices familiar 

to all participants that are to be applied to support collaborative virtual integration, such as 

policies for branch management and merge conflict resolution.  The AADL textual format is used, 

and conventional tools (originally developed for software source code management) are applied 

to manage collaborative integration and debugging of the AADL models. 

The system architect should first develop a model of the overall system architecture at a high level of 

abstraction.  This initial model should minimally identify all subsystems and components for which more 

detailed models will be acquired and virtually integrated.  This AADL model will be derived from yet higher-

level requirements, such as end user functional requirements and AADL patterns and libraries for family-

of-systems architectures as discussed in Integrate with the Overall Development Process. 

The following goals should be considered when planning component model definition, component model 

acquisition, and system model virtual integration.   

• Model descriptions provided to model suppliers by a virtual integrator should reuse portions of 

the system model into which the procured models will be virtually integrated, e.g., descriptions 

of models to be procured are self-contained subsets of the system model. 

• A model description provided to a supplier should require little or no modification by that supplier 

in order to make local use of that model, e.g., to use it as a virtual analysis harness. 

• A component model delivered by a supplier should require little or no modification in order to be 

virtually integrated into the system model, e.g., it is a reusable model for a reusable component. 

• A clear distinction should be made between properties that are requirements given to the model 

supplier and values to be provided by the supplier.  Properties intended to be modified by the 
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integrator (such as binding declarations to integrate a component) should be identified and 

grouped together. 

These are goals in the sense they are unlikely to be fully achieved.  ACVIP plans should identify 

expectations and policies for model integrators and suppliers to change descriptive and delivered models 

where this is needed to accomplish virtual integration.  An overarching guideline is to structure description 

models to reflect the overall project plan and supply chain structure.  A recommended default policy is 

that the model integrator is responsible for model changes needed to accomplish virtual integration.  This 

minimizes the need for complex coordination between multiple organizations and facilitates reusable 

models for reusable components. 

Delivered component models may require modification by the model integrator.  For example, 

dependencies may exist on mock environment models that were used during component model 

development.  These dependencies may need to be changed by the model integrator.   The model 

integrator may need to add additional data after receiving the component models.  For example, 

component configuration properties, and connections and bindings between components, may be 

needed.   Where possible, models should be structured so that extensions and refinements of the earlier 

specification or delivered component models can be used to declare modifications. 

The virtual integrator will apply a specific set of tools to perform the planned analyses on the virtually 

integrated model.   It is not necessarily the case that model suppliers will have all the tools used by the 

virtual integrator.  In such cases, ACVIP planners should consider how component model suppliers will 

support the finding and fixing of defects in the virtually integrated model. 

Model suppliers may have analysis tools that are not available to the model integrator.   In some cases, 

this can be managed using the compositional analysis approach described in Address Access Restrictions. 

4. Support Certification Approvals and Readiness Reviews 
Projects must undergo a number of certifications.  The checklist cited in the Defense Acquisition 

Guidebook has 26 potential certifications [31]. There are also a number of readiness reviews that could 

be supported by model review and analysis.   

Failure to receive certification or readiness approvals is an important category of potentially expensive 

rework.   ACVIP can be applied for the purposes of reducing defects that are not detected until late phase 

review by certification authorities identify shortcomings.  ACVIP Plans should align with planned 

certification and readiness reviews.  Specifications for analyses that address safety and security should 

align with certification procedures in order to reduce that category of defects and rework.   

If ACVIP outputs are also submitted as evidence to certification authorities, a much higher level of 

assurance is needed that the analysis results are correct and that the models accurately describe the as-

built system.  The threshold is no longer that error detection effectiveness is good enough to significantly 

reduce cost, schedule and risk.  ACVIP planners should evaluate which modeling & analysis activities can 
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also serve that purpose.   Certification authorities require certain kinds of evidence in certain formats.  

Tools must be qualified.  The models must be validated, see Assure System Conforms to Models. 

4.1 DoD System Safety Process 
MIL-STD-882E System Safety is the overarching framework for system safety in DoD programs [32].  MIL-

STD-882E defines a system safety process that enables identification and management of hazards and 

their associated risks during system development and sustaining engineering, illustrated in Figure 7 

Elements of the MIL-STD-882E System Safety Process.   

The use of modeling and analysis as evidence to certification authorities is not necessarily a planned 

purpose of ACVIP, but planned ACVIP modeling and analysis activities should still align with safety 

processes in order to reduce project risk and rework due to problems found during certification. This 

section overviews the safety process to provide context for supporting analyses discussed in subsequent 

review sections. 

MIL-STD-882E does not identify specific technical methods that should be used to accomplish elements 

of the system safety process.   Specific safety objectives and methods are described in the Program System 

Engineering Plan and the project System Engineering Management Plan.   Projects have their own tailored 

safety plans.  ACVIP planners should determine which safety analyses should be performed based on 

project ACVIP goals and technical needs.   The guidelines in this handbook are presented in the context of 

the following more specific safety processes. 

 

Figure 7 Elements of the MIL-STD-882E System Safety Process 

4.1.1 SAE ARP4761 Safety Assessment Process 

MIL-HDBK-516B Airworthiness Certification Criteria cites elements of SAE ARP4761 Guidelines and 

Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, which 
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recommends specific analyses at specific phases of a system safety process [33].  Figure 8 SAE ARP4761 

Safety Assessment Process Analyses illustrates analyses that may be performed to support this process 

and the directions in which information and traceability flow between analyses.  Among these, this 

handbook provides guidelines for: 

• Functional Hazard Assessment 

• Markov Analysis 

• Fault Tree Analysis 

• Failure Modes and Effects Analysis 

Preliminary System Safety Assessment and System Safety Assessment can be addressed using this 

handbook by viewing them as elaborations of Functional Hazard Assessment combined with traceability 

that shows how more detailed analyses provide evidence that risks have been satisfactorily mitigated. 

 

Figure 8 SAE ARP4761 Safety Assessment Process Analyses 

4.1.2 System-Theoretic Process Analysis 

System-Theoretic Process Analysis (STPA) is a hazard analysis technique for surfacing scenarios that lead 

to identified hazards and accidents [34] [35] [36].  STPA supports safety analysis from a systems-theoretic 

view of causality.  The STPA approach views a system as control loops with nodes acting as sensors, 

controllers, actuators, and the controlled plant.  Sensor and control signals pass between these nodes.   

STPA can identify a larger set of potential accident causes, including causes that do not involve component 

failures.  STPA can identify hazards due to design flaws or unexpected interactions among otherwise 

operational components.  STPA also considers influences outside the engineered system.  STPA analysis 

can take into consideration human interactions, processes, and organizational structures that surround 

the system.    
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The STPA process begins with the establishment of the foundational elements of the system being 

analyzed.  The first foundational element is the set of accidents and hazards for the system.  In STPA an 

accident is defined as an event leading to loss.  A hazard is defined as a set of system states that, when 

combined with worst case environmental conditions, will lead to an accident.  The second foundational 

element is a set of constraints that will prevent the hazards from leading to accidents.  The final 

foundational element is the top-level safety control structure of the system.  This control structure can be 

modeled in AADL, identifying the STPA role (sensor, actuator or controller) for components and their 

interactions with each other.  As part of the STPA analysis the developer applies risk controls to mitigate 

the hazards.   

With the foundational elements identified, the STPA methodology shows how to analyze control loops in 

two steps to determine if inappropriate control actions, or lack of necessary control actions, can lead to 

accidents.  The methodology identifies which conditions within the operation of the control loop 

components and which external factors can lead to hazardous control actions.  STPA Step 1 uses 

guidewords to help identify unsafe control actions. These guidewords specify when a control action is: 

1. Provided when not appropriate 

2. Not provided when needed 

3. Applied too long 

4. Stopped too soon 

5. Provided early 

6. Provided late 

Unsafe control actions are identified by applying the guidewords to all of the control signals within the 

system and tracking which ones can lead to hazards.  Step 2 of STPA determines how these hazardous 

actions can occur within a system.  This step looks at operations within a component such as inadequate 

control, or an inconsistent process model within a controller, or inadequate operation of a sensor or 

actuator.  This step requires domain experts to identify scenarios where hazardous actions can occur even 

if no components fail.  

Portions of the STPA analysis can be supported using an AADL system model.  The control system can be 

modeled using AADL components.  The control signals can be modeled with flows. The EMV2 error library 

can be leveraged to apply errors based on guidewords.  Hazards and accidents can be represented using 

properties.  The SRR Functional Hazard Assessment and other more detailed analyses that support the 

overall safety process contain guidelines for conducting an STPA process using AADL. 

4.1.3 Airworthiness Qualification and Approval 

DoD Directive 5030.61, DoD Airworthiness Policy, states that “all aircraft and air systems owned, leased, 
operated, used, designed, or modified by DoD must have completed an airworthiness assessment [37].”  
Each department establishes an airworthiness authority responsible for defining and overseeing an 
airworthiness qualification process and issuing approvals to operate.  

Airworthiness Qualification processes require that an acceptable plan for system safety be developed 
early in the acquisition program.   DoD Directive 5030.61 DoD Airworthiness Policy and its cited MIL-STD-
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882E System Safety and MIL-HDBK-516B Airworthiness Certification Criteria provide guidelines for a 
system safety program plan.  Each DoD department has its own set of more detailed directives and 
guidelines for airworthiness qualification. 

• Army regulations require that “Army aviators and unmanned aircraft system operators will 

not operate aircraft in the performance of official duties if there is no airworthiness release 

or airworthiness approval [38].”  The Combat Capabilities Development Command 

(CCDEVCOM) Aviation & Missile Center (AMC) Systems Readiness Directorate (SRD) is the 

delegated airworthiness authority for US Army aircraft [39]. SRD specifies and applies the 

Army Military Airworthiness Certification Criteria (AMACC) [39].  For each program, an 

Airworthiness Qualification Plan (AQP) will be issued by the customer and a responding 

Airworthiness Qualification Specification (AQS) will be provided by the supplier.  Where ACVIP 

outputs are to be used as model-based evidence to support airworthiness qualification, the 

ACVIP Management Plan should align with these documents, and the Airworthiness 

Qualification Specification should cite the ACVIP methods and results to be used to support 

airworthiness qualification and approval. 

• (Citations for Navy airworthiness deferred to a later version.) 

• (Citations for Air Force airworthiness deferred to a later version.) 

• (Citations for NASA airworthiness and spaceworthiness deferred to a later version) 

 
RTCA DO-178C calls for the creation of a Plan for Software Aspects of Certification (PSAC) by a software 
developer.  RTCA DO-254 similarly calls for the creation of a Plan for Hardware Aspects of Certification 
(PHAC).  There are usually many software and hardware developers and PSACs and PHACs in a large 
acquisition program.  In the context of these guidelines, the SRR model establishes system safety 
requirements that flow down to software and hardware components.  ACVIP plans for architecture 
aspects of certification should provide guidelines for software and hardware developers to align their 
plans for certification with ACVIP plans, especially the model-based aspects of their plans for software and 
hardware component development and certification. 

Wherever a PSAC or PHAC uses ACVIP modeling and analysis to satisfy an airworthiness qualification 
obligation, RTCA DO-330 Software Tool Qualification Considerations may be used to determine which 
AADL tools need to be qualified.  ACVIP plans should identify such tools and the means for qualifying them 
using that guideline. 

4.2 Security Assessment and Authorization 
Three DoD Instructions specify processes to be used for cybersecurity assessment and authorization. 

1. DoDI 8540.01, Cross Domain Policy [40], specifies the process for qualifying DoD Information 

Systems that must process classified information. This Instruction mandates the use of a Cross 

Domain Solution (CDS) where needed to isolate information at different security levels. This 

Instruction impacts a system architecture by requiring that all cross-domain information flows 

within the system pass through an approved CDS. This results in a system architecture that follows 

the Multiple Independent Levels of Security (MILS) approach of system design. 

2. DoDI 8510.01, Risk Management Framework (RMF) for DoD Information Technology (IT) [41], 

specifies a six step process for categorizing the system in terms of its loss impact for information 
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Confidentiality, Integrity, and Availability, then selecting, implementing, and assessing security 

controls to mitigate those impacts, and finally approving the system and monitoring it for future 

problems.  

3. DoDI 8500.01, Cybersecurity [42], highlights the need for Operational Resilience (OR). OR has 

three goals: to make information and information services always available to authorized users, 

to ensure that the system’s security posture is always visible to system owners, and to enable the 

system to respond and recover with little or no human intervention. The system requirement for 

a Cyber Survivability Endorsement (CSE) addresses these and other goals. 

 

DoDI 8500.01 Cybersecurity provides an overview of the security process for DoD Information Technology 

(IT) systems [42].    The use of modeling and analysis as evidence to security certification authorities is not 

necessarily a planned purpose of ACVIP, but planned ACVIP modeling and analysis activities should still 

align with security processes in order to reduce project risk and rework due to problems found during 

certification.   This section overviews the security process to provide context for specific supporting 

analyses discussed in subsequent review sections. 

Department of Defense Instructions (DoDI) define a hierarchy of requirements that impact security 

qualification for National Security Systems (NSS) like Future Vertical Lift (FVL). The umbrella instruction, 

DoDI 8500.01 Cybersecurity, summarizes the key areas for concern (see Figure 9). This Handbook focuses 

on two of those areas: security qualification for DoD Information Technology (IT) that process multiple 

levels of classified information in support of mission partners, and risk-based security qualification for all 

DoD IT. The following sections guide model developers to create supporting evidence, at major system 

development milestones, for each qualification. In the spirit of ACVIP, the guidance focuses on activities 

performed prior to CDR. 

 

Figure 9. Two Key Cybersecurity Regulations for DoD IT 

4.2.1 Cross Domain Policy 

DoDI 8540.01 Cross Domain Policy requires DoD IT that will process multiple levels of classified 

information to use an approved cross domain solution (CDS) for information sharing between different 

security domains [40].  An approved CDS is one selected from the Unified Cross Domain Services 

Management Office (UCDSMO) Baseline List of Approved Solutions. Approving authorities pose three key 
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questions: is the CDS needed, what are its requirements, and what is the risk to the DoD community? 

Model-based engineering activities at SRR should demonstrate the need for the CDS, activities at PDR 

should identify the requirements that support the selection of the CDS, and activities at CDR should assess 

that selection within the overall system architecture to support an overall risk assessment. Model-based 

architectural analysis should minimize the risk that the system will fail an assessment against DoDI 

8540.01. 

A first step for the modeling activity is to identify the system boundary and those entities in the system’s 

environment that either consume or provide classified information for the system. The system’s 

environment determines the need for the CDS according to the external networks to which the system 

connects and the external users who access the system.  

If the system’s environment requires different levels of information security processing, then model 

analysis must demonstrate that the system isolates information security processing by security level. 

Specifically, analysis must show that the CDS partitions information processing within the system by 

security level. Model analysis should examine both explicit information flows, such as connections to 

external networks and users, and implicit information flows, such as bindings between software and 

hardware. Only model components designed as a CDS should observe information flows at multiple 

information security levels. 

Systems with MLS processing requirements generally adopt a Multiple Independent Levels of Security 

(MILS) architecture, that is, single level components connect to a CDS to enable cross domain information 

sharing. MILS architectures provide rigorous separation between components at different levels, which is 

achieved either by physically separating these components on different execution platforms or by hosting 

the components on an access type CDS, which isolates its processing partitions. Information sharing 

occurs via a transfer type CDS, which converts information at one security level to a different security 

level.  

4.2.2 Risk Management Framework Policy 

DoDI 8510.01 Risk Management Framework (RMF) for DoD Information Technology  requires a risk 

assessment of DoD IT for information assurance gaps [9] [41] [43]. Following the six-step RMF process 

(illustrated in Figure 10 Risk Management Framework Process Steps), the DoD IT system owner 

categorizes the system according to its impact on mission assurance given a loss of information 

Confidentiality, Integrity and Availability, selects security controls to minimize those losses, implements 

the security controls, assesses that implementation, and after approval to deploy the DoD IT, continues 

to monitor the system for potential losses. Systems with higher impacts implement stronger security 

controls. Model-based engineering activities at SRR should support system categorization, activities at 

PDR should support security control selection, and activities at CDR should support security control 

assessment. 
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Figure 10 Risk Management Framework Process Steps 

The first step is to model the system boundary. The model developer should model the entities in the 

system’s environment that interact with the system, the information flows to and from those entities, and 

the impact of each information flow on the system’s mission given a loss of Confidentiality, Integrity, and 

Availability (CIA). The system’s environment determines the criticality of the information flows. The higher 

the impact of information loss, the greater the number of security controls required to protect that 

information flow. Model analysis should ensure that system users cannot use less critical flows to access 

or impact more critical flows. 

Next, the model developer should model the security controls required to protect the information flows 

according to their CIA impacts. While the RMF process calls for choosing security controls based on the 

highest identified impact, choosing controls at the granularity of an individual information flow lets the 

model developer leverage architectures that isolate flows and avoid the need for security controls 

everywhere. This consideration is especially important for embedded systems that partition processing 

across space and time. 

RMF security controls offer protection through policy and technical means. The model developer will 

focus on technical controls, that is, controls to be implemented in software and hardware.  The model 

developer should specify the system components that will implement required technical controls. Model 

analysis should confirm that the system implements all technical controls required to fully protect each 

information flow according to its CIA impacts. 
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The RMF security control assessment (Step 4) measures the effectiveness of each control. The RMF 

process measures effectiveness largely in terms of whether the control operates correctly. Without an 

implementation however, it is difficult to measure correctness. So instead, model analysis at this stage 

should examine architectural considerations for effectiveness. For example, model analysis should assess 

whether or not it is possible to bypass the control and still access the protected information flow. Model 

analysis should also look for ways to tamper with the control’s configuration and change the enforcement 

behavior of the control. These early, architecture-centric analyses support the RMF process’s assessment 

of control effectiveness and help lower the risk of a failed assessment.  

4.2.3 Cybersecurity Assessment and Approval 

Each DoD service establishes its own processes for cybersecurity certification and approval. 

• Army Regulation 25-2 Army Cybersecurity defines the role of Approval Officers (AO) who can 

issue an Approval To Operate (ATO) [44]. 

 

4.3 Physical Configuration Audit 
The Physical Configuration Audit (PCA) is a formal examination to verify the “to be fielded” configuration 

of a validated system against its design and manufacturing documentation [45].  It is recommended that 

PCA include an examination to verify that the “to be fielded” system conforms to all delivered AADL 

models that specify and describe that system.  The guidelines in Assure System Conforms to Models 

should be considered. 

5. Define Model Content Needed for Analyses and Reviews 
The primary way in which model content is determined in an ACVIP Management Plan is to specify the 

analyses that are to be performed on that model.  The information that must be captured in a model is 

that which is needed to perform the required analyses with the required precision and certainty.   

Guidelines for developing analysis specifications and model content are given in Model and Analysis 

Precision and Uncertainty, Mixed-Fidelity Modeling and Analysis, and subsections on individual analyses. 

This section is structured as a menu of analyses to be considered at familiar review milestones: SRR, SFR, 

PDR, CDR.  These are used as well-known guideposts for the purpose of structuring this section.  ACVIP 

itself does not recommend any specific set of reviews.  Reviews may vary depending on the acquisition 

path and development process.  Continuous virtual integration may be done in an agile or DevSecOps 

development process. 

The models used at successive reviews should be elaborations of those used in preceding reviews, as 

discussed in Abstraction, Elaboration, and Conformance.  Once an analysis is introduced at a review, it 

should be rerun for subsequent reviews.  The precision and certainty of analysis results will increase at 

successive reviews due to the use of increasingly elaborated and verified models.   
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Some basic kinds of analysis are introduced in the subsection on SRR, the review where goals and 

requirements for selected analyses are first specified.  Subsequent subsections will include additional 

analysis specification guidelines as needed.  This list is not exhaustive.  ACVIP planners should consider 

what tools and analyses are available to them.  The guidelines for analysis specifications cite review 

criteria and products listed for these major milestones in the Defense Acquisition Guidelines, Chapter 3, 

Systems Engineering [45].  ACVIP planners should consider these in addition to project-specific goals and 

requirements. 

This handbook is tool-agnostic.  These guidelines use conventional terms for kinds of analyses and cite 

standard AADL features to use for model content.  The ACVIP Management Plan is likely to identify kinds 

of analyses as is done in this handbook.  Detailed analysis specifications for specific projects will identify 

specific tools, details of model content, and details of analysis results and their implications. 

It is not possible to exactly and completely capture to-be system behavior using AADL semantics and 

language features.  The selected tool assumptions and behaviors may not exactly match the technologies 

and detailed design patterns selected for the to-be system.  When developing analysis specifications, 

whether during planning or execution, differences between tool assumptions and behavior and the 

technologies and design patterns selected for the to-be system should be evaluated. The correspondence 

between tools and system technologies does not need to be exact, but the analysis results need to be 

acceptable for the selected purpose.  Where significant differences exist between tool assumptions and 

system technologies, that should be considered as part of risk and uncertainty management. 

Example:  A selected timing analysis tool assumes that a message will be sent by a thread at the 

completion of each execution of that thread (the instants a thread is suspended awaiting the next 

dispatch).  In the selected Real-Time Operating System (RTOS), a message is sent by a thread by 

calling a send service at any point during its execution.  The system will exhibit a greater range of 

message send times than is assumed by the analysis tool.  The ACVIP plan includes a task for 

engineers performing timing analysis to review analysis assumptions of the tools and identify any 

uncertainty or error that might be introduced into the analysis results.  For example, greater jitter 

in message send times may increase anomalous scheduling effects in some multi-resource systems 

[46] [47]. 

Most analysis tools operate on an instantiation of a specific system implementation declaration.  Model 

comments and model user guides should identify the system implementation declaration to be selected 

for each analysis.   

5.1 Model and Analysis Precision and Uncertainty 
Models can vary widely in their level of detail and uncertainty.  The level of detail has a significant impact 

on the ability to detect defects and assess and manage risk – and the cost and schedule required for 

modeling & analysis.  This also affects how work is divided among different organizations, since the role 

of one organization is often to receive a model having modest detail and then deliver back a model that 

adds significantly more detail.  This section introduces concepts and guidelines to describe what level of 

detail should be provided in a model. 
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Terms such as “functional,” “logical,” and “physical” are often used informally to characterize the 

intended use or level of abstraction of a model.  Some may associate specific meanings and processes 

with these terms [48].  Some terms are defined in standards with technical meanings specific to those 

standards, such as “computation independent,” “platform independent” and “platform specific” in the 

Object Management Group (OMG) Model Driven Architecture (MDA) standards or the “conceptual,” 

“logical,” and “platform” levels in the Future Airborne Capability Environment (FACE) data modeling 

standard.  Where models are being delivered and integrated, the term “level” has also become associated 

with level or tier in the hierarchy of the model structure (e.g., system is level 1, subsystem is level 2).  The 

term “level” (and “tier”) is also sometimes used when discussing the structure of the supply chain.  Terms 

like these can be convenient ways to quickly and roughly indicate the level of detail of a model.  However, 

they may also connote process phases or model purpose.  This handbook does not define or recommend 

any particular set of labels to intuitively characterize the information content of a model.  Where ACVIP 

planners choose to use such terms, they should be careful that their meaning is made clear in the context 

of a specific project and performing organizations. 

This handbook uses precision and uncertainty to further characterize the detail needed in a model for a 

specific purpose.  Precision refers to the degree of refinement with which an analysis is performed or a 

measurement stated.  It is the amount of information and level of detail in the model and its analysis 

results.  Model precision is not the same thing as model accuracy, or the degree to which the model and 

its analysis results accurately describe the final system. This topic is discussed in Assure System Conforms 

to Models. 

Uncertainty refers to the degree of trust that the values produced by an analysis are close enough to the 

actual values for the desired purpose.   Precision and uncertainty in model property values and precision 

and uncertainty in analysis results are different things.  The latter must be determined as a function of the 

former using methods such as uncertainty propagation and sensitivity analysis. 

To decide or describe more exactly what needs to be captured in a model, the recommended method is 

again to work backwards from the desired analysis.   What level of precision and certainty is required in 

the analysis results?  

The exact characterization of precision depends on the type of analysis.  Identifying the analysis needed 

is the first step in describing the needed model content – it is the content needed to run the required 

analysis.  However, many analysis tools will adapt to the amount of information in the model – they 

provide results for what is declared in the model.    The level of decomposition of a system into subsystems 

and sub-subsystems may need to be described in the plan or in the analysis specification.  The AADL 

categories of components that are included in a model may need to be specified. 

Example: A model with AADL system declarations for software and hardware with resource supply 

and demand properties such as MIPS and BPS is sufficient for initial resource loading analysis.  

When these systems are elaborated to specific processors and threads, the model has sufficient 

precision to do resource-loaded schedule (schedulability) analysis. 
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Analysis tools compute values from the information in the model.  Uncertainties in the analysis results 

depend on uncertainties in the parameters of the model.  In order to assess this, the analysis method and 

tool must do some form of sensitivity analysis or uncertainty propagation [13].  Depending on the analysis, 

this may require that uncertainties be captured in the model in a suitable way. 

Example:  A virtually integrated model includes two redundant sensors, a compute module, and a 

display.  The compute module and display hardware are existing components whose failure rates are 

well-known.  The sensors are a new product whose fault rate has been estimated.  The ACVIP 

Management Plan calls for a fault tree analysis to be performed at PDR, where the specified analysis 

tool will output overall function reliability and also importance and sensitivity analysis values.  

Importance analysis helps identify fault events that contribute most to the system’s unavailability. 

Sensitivity analysis helps identify fault events where a relatively small change in a fault rate will lead 

to relatively large changes in function reliability. 

ACVIP planners should consider what support for sensitivity analysis and uncertainty propagation is 

available in analysis tools, and how much additional modeling effort is needed to determine and capture 

parameter uncertainties in the model.  This is particularly important when a goal is to reduce risk as 

discussed in Reduce Technical Risk. 

5.2 Mixed-Fidelity Modeling and Analysis 
Different subsystems in a model may have different degrees of precision and uncertainty.   This is 

conventionally called mixed-fidelity modeling.  This can easily occur in a model created by virtually 

integrating other models or in a model where some components have yet to be fully specified.  Models 

for legacy components may only exist as black-box models.     ACVIP planners should consider what level 

of detail is needed in the different parts of a model, and in the parameters for different kinds of analyses, 

in order to achieve the desired benefits with the least modeling effort.  It is expected that most complex 

system models will be mixed-fidelity. 

Example: A system integrator is virtually integrating a model of a sensor, three models of software 

components that process sensor data, and a model of a display.  The three software component 

models are virtually integrated into a compute module.  The sensor, software, and display 

communicate over a switched network.  ACVIP planners are most concerned about the timing and 

loading of the compute module.  The ACVIP Management Plan says the sensor and display models 

integrated for PDR may consist only of AADL type declarations that declare message contents and 

transmission rates and internal latency upper bounds.  The three software component models shall 

include AADL implementation declarations that specify threads and message hand-shaking 

protocols.  A latency timing analysis tool is selected that is able to determine end-to-end latency 

bounds using black-box sensor and display subsystem models and a white-box compute module 

subsystem model. 

Some decisions about which parts of a model should be elaborated with more detail and which are at a 

sufficient level of detail might best be made during execution rather than initial planning.  Planners should 
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consider the use of uncertainty and sensitivity analysis methods to guide decisions made during program 

execution (rather than during program planning) about the details of an analysis specification. 

Mixed-fidelity modeling and Abstraction, Elaboration, and Conformance relations within evolving models 

create uncertainties in whether or not a model contains all the information needed for a particular 

purpose.  There are standard AADL properties to control legality rule checking by tools for classifier 

matching and signature matching.   However, in general tools decide what feed-back is provided in terms 

of errors, warnings, uncertainty and sensitivity data in reports, etc.  Different tools have different policies 

about what they will assume as default values for undeclared properties.   Whether or not particular errors 

or warnings are of concern depends on the tool and purpose.   Large and complex models may result in 

large numbers of warnings and large amounts of analysis data.  ACVIP planners should consider what tool 

support is available and methods used to configure and triage tool feed-back. 

5.3 System Requirements Review 
The System Requirements Review (SRR) ensures that all requirements are defined and consistent with 

cost, schedule, risk, and other system constraints; and with end user expectations.  One class of 

requirements is system performance requirements derived from the Initial Capabilities Document (ICD) 

or draft Capability Development Document (CDD).  There are requirements derived from regulations and 

policies such as the safety and security policies discussed in Support Certification Approvals and Readiness 

Reviews.  There are requirements derived from key business drivers such as compliance with standards 

and architectural patterns to satisfy MOSA mandates.  

Subsections for each analysis will open by citing Defense Acquisition Guidance (DAG) review criteria that 

may be addressed by that analysis [45].  Planners should consider additional criteria that apply to 

individual projects.  The following DAG SRR criteria apply broadly to all analyses. 

• Technical risks are identified, and mitigation plans are in place. 

• Contractor clearly demonstrates an understanding of the system requirements consistent with 

the ICD and draft CDD. 

• System requirements are assessed to be verifiable. 

• Requirements can be met given the plans for technology maturation. 

• Key technology elements have been identified, readiness assessed and maturation plans 

developed. 

• Program technical risks are adequately identified and documented such that there is a clear 

understanding regarding the contractor's ability to meet the specification requirements. 

• Draft verification methodologies have been adequately defined for each specification 

requirement. 

5.3.1 SRR General Guidelines 

The primary ACVIP SRR activity is to assure requirements that are to be satisfied or verified by ACVIP are 

adequately captured in a combination of the ACVIP Management Plan and an initial requirements model, 

including preliminary specifications of the analyses to perform during the project.   SRR determines that 

the ACVIP Management Plan, if properly executed, will satisfy and verify the requirements and goals 
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allocated to ACVIP activities.  The ACVIP model should capture all key interfaces, business drivers, 

performance requirements, etc., that are to be verified by analysis or model-based testing at some point 

during the project.  The SRR model should be traceable back to customer models and documents used to 

specify their requirements. 

To the maximum extent possible, requirements should be captured in analyzable model declarations such 

as types, flows, and properties rather than natural language “shall” statements.   

Requirements are often captured in a mix of natural language documents and SysML.  Where 

requirements are captured in SysML that are to be satisfied or verified by ACVIP activities, an AADL Profile 

and supporting tool should be applied to those model elements so those requirements are automatically 

synchronized with their AADL representations and tracked during virtual integration. 

SRR is also the time at which preliminary analysis specifications are reviewed.  ACVIP Management Plans 

will minimally identify categories of requirements and goals to be addressed by different kinds of analyses.  

At SRR, analysis specifications should be sufficiently detailed to judge whether an analysis will satisfy or 

verify a requirement.  Analysis specifications will at some point include details such as identifying specific 

tools to be used, but details may be deferred where rolling planning is done.   

Analysis results are not limited to simple property, value pairs.  Analysis results often include visualizations 

such as graphs and curves.  Some analysis results are explored using interactive tools.  Model-based 

review procedures should be adapted as needed for non-traditional forms of requirements specification 

and analysis results. 

The model should include a modularization of the system architecture into major subsystems and 

components as needed to specify required key interfaces.  The system boundary is a key interface that 

should be modeled.  The Defense Acquisition Guidebook SRR products and criteria checklist includes a 

preliminary identification of all software components, which may require further detail in how the system 

is modularized into components [45].    

System-level requirements trace to more detailed derived requirements.  For example, an end-to-end 

latency requirement may trace to derived latency requirements for subsystems.   Such allocations often 

change during development, e.g., one supplier provides a model at PDR showing they are well within their 

memory allotment while another is over. Plans should accommodate changes in how requirements are 

allocated to derived subsystems and components.  Tools should be selected that support trade studies 

and uncertainty management. 

Applying analysis tools to the SRR model is expected to produce limited results.  The SRR model primarily 

serves to establish requirements for subsequent modeling and analysis.  Some analyses may issue errors 

if run on the SRR model because those requirements have not yet been satisfied in that model.  Analysis 

results that flag errors can be useful to assess whether the captured requirements are adequate.  For 

example, Multiple Independent Levels of Security (MILS) requirements may reasonably result in errors 

because there are no Cross Domain Solutions (CDS) in the model yet.  Examination of the MILS analysis 
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results that identify security level conflicts is useful to validate those requirements.  Removal of all analysis 

errors is not necessary at intermediate review milestones, only that all of them be addressed in some way. 

Additional content should be added as needed to guide the development of models for subsequent 

reviews.   Additional content should be added as needed to define architectural alternatives and support 

trade studies.  Additional content should be added as needed to support project and technical risk 

management.  The SRR model serves as the initial specification for the more elaborate models that are to 

be subsequently developed, procured, and virtually integrated.  The guidelines provided in  Describe 

Models to be Developed and Delivered should be applied to the SRR model to flow-down requirements 

for component models and component ACVIP activities. 

5.3.2 SRR Technical Plans Review 

Several plans are reviewed at SRR [45].  The ACVIP Management Plan should be consistent with and 

support other plans.  Here are examples of plans that are likely to be related to ACVIP plans. 

• System Engineering Management Plan 

• Modeling & Simulation plans, including the ACVIP Management Plan 

• Risk Management plans 

• Configuration Management plans 

• Test plans 

• Certification plans 

5.3.3 SRR Bidirectional Traceability Established 

Bidirectional requirements traceability should be established by SRR [45].  Traceability goes through 

multiple kinds of assets.  Traceability should be established between ACVIP plans and other plans, 

between documents and models, between the AADL and other models, and within individual models. 

The SRR model should declare requirements that are allocated to the architecture and its components 

and are to be verified by analysis of the architecture model as discussed in SRR General Guidelines.  The 

SRR model should establish modeling patterns and conventions that will be used to elaborate traceability 

information as the project progresses through subsequent reviews. 

Traceability must be done across different kinds of model-to-model boundaries. 

• Traceability must be established between high-level stakeholder requirements in formats such as 

natural language documents, systems engineering modeling languages (such as SysML), and the 

AADL models. 

• Requirements must be traced between AADL component models and other formats and assets 

used for detailed component specifications, such as FACE USMs and test specifications and 

results. 

• Requirements must be traced from the AADL models to analysis results obtained by applying tools 

to those models. 
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Traceability modeling guidelines should be identified in the ACVIP plans.  Common guidelines for 

representing traceability analysis are recommended to make it easier for different stakeholders to review 

models from different suppliers, and traceability guidelines are likely to be identified in the government 

Program ACVIP Plan.  In practice traceability is done using several mechanisms in different modeling 

languages.  Navigation through traceability is often facilitated by tooling.  Tools may infer some 

traceability relationships from explicitly declared data in models, flag unexpected presence or absence of 

traceability links, and assist managing requirements changes.  The traceability modeling guidelines for a 

project should be adapted as needed to handle traceability to, from, and within AADL models.   

AADL extends and refines declarations can be used within an AADL model to implicitly establish 

traceability for some requirements and analyses without additional special traceability declarations.  For 

example, SRR Interface Static Consistency Analysis can make use of this form of implicit traceability.   

Guidelines for controlling property value inheritance are given in Abstraction, Elaboration, and 

Conformance.  Whether or not property inheritance is sufficient to establish traceability from an earlier 

to a more elaborate model depends on the kind of analysis and tools that make use of those properties. 

Example: The customer requirements included a performance requirement that the crew be 

alerted of a particular class of threats within 1 second of a sensor detecting those threats.  This is 

captured in a Latency property association for an end to end flow from the sensor to the cockpit 

display. The SRR model shows this flow passing through a sequence of flow path specifications 

declared in the types (interfaces) of major subsystems. As the SRR model is elaborated into PDR 

then CDR models, flow path implementations are declared for these flow path specifications as 

part of the implementations of the subsystems.  The AADL language features for flows implicitly 

capture traceability from the high-level end to end flow in the SRR model to a fully implemented 

and detailed end to end flow in the CDR model. 

Example: The draft AADL Requirements Definition and Analysis Language (RDAL) Annex provides 

a proposed standard way to capture additional requirements information and explicitly declare 

traceability links in an AADL model.  Tools may be available that support draft annexes. 

Example: The Object Management Group (OMG) Requirements Interchange Format (ReqIF™) 

standard or Open Services Lifecycle Collaboration (OSLC) Requirements Management standard 

could be used to interface with external requirements data bases. 

Example: A contractor receives stakeholder requirements including a SysML model.  This model 

consists primarily of requirements, use case, and activity diagrams.  There are a few block 

definition and implementation diagrams that show the system boundary and key interfaces to 

government-furnished software and hardware components. The contractor uses a SysML AADL 

Profile and translation tool to generate AADL system declarations from SysML block diagrams, 

including translation of selected parametric constraints into AADL property and annex 

declarations.  Requirements traceability that occurs within the SysML model stays in the SysML 

model.  Traceability from SysML to AADL is implicit in the well-defined and deterministic translator 

mapping that preserves naming and references SysML element UUIDs.  All manually created 
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portions of the AADL SRR model are declared as extensions and refinements of the generated 

portions so that re-generation can be used to re-establish traceability without over-writing hand-

written AADL modifications.  Where AADL language features and analysis tools do not establish 

implicit traceability for a class of requirements and analyses within the AADL model, the contractor 

uses a tool and property set based on the draft AADL RDAL Annex. 

5.3.4 SRR Modeling and Human Inspection 

Human inspection is a cost-effective way to detect many categories of defects [12]. An organization 

should adapt its chosen model inspection techniques to apply to AADL architecture models.  Planners 

should consider defect categories and scenarios that are may not be detected by planned automated 

analysis using tools.  Appropriate allocation of requirements for and on an AADL model (e.g., conform to 

customer modeling guidelines, do virtual integration to assess MOSA update scenarios) will likely 

require human inspection. Reviewers should consider which goals and requirements have been 

appropriately allocated to ACVIP activities, which ones should have been but were not, which ones were 

but should not have been.  

Model creation should be considered a form of analysis or structured requirements elicitation. The act 

of creating a specification in a rigorous modeling language can detect defects.  This can reveal gaps, 

ambiguities, and inconsistencies detected by basic language legality rule checking.   Planners should 

consider categories of defects that are likely to be detected by model creation, even if analysis tools are 

not applied to that category.  Identification of key interfaces (e.g., interfaces selected to meet MOSA 

goals) is an example of a requirement that can be satisfied by identifying that interface in the model.  

Tools can later be applied to analyze criteria such as consistency with other interfaces and compliance 

with required standards. 

Reviewers should evaluate model content, analysis specifications, and available analysis results as part 

of technical risk assessment.  If something seems overly complicated in the model, or there are concerns 

about how well the model and analysis specifications align with anticipated detailed design and 

implementation methods, that should be assessed for technical risk. 

Example: The ACVIP plans call for human inspection of models to assess whether technical risks 

are identified in the models and mitigations are included in the system design. Models are 

reviewed for content for life-cycle support, training devices, tactics, mission system, etc. 

5.3.5 SRR Interface Static Consistency Analysis 

External interfaces to the system should have been documented.  Preliminary identification of all software 

components should have been completed.  System requirements are sufficiently detailed and understood 

to enable functional definition and functional decomposition. [45] 

An architecture is defined to be a set of components and the interactions between them.  Some form of 

interface static consistency analysis can be applied to any architecture viewpoint. 

Static interface consistency analysis is a set of checks on the static structure of the model.   Interfaces are 

declared using AADL type declarations.  Features of a type should be present to specify information 
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provided or required by a component or dependencies it has on other components.   Various specialized 

forms of feature declarations provide information about information exchange mechanisms, e.g., 

information can be transferred using messages, shared objects, or subprogram calls.  To analyze the 

consistency between two interfaces, connection declarations are used to identify dependencies between 

specific interfaces.  Binding declarations are used to identify resource dependencies, such as a software 

component dependency to be hosted on an operating system that complies with a specified standard. 

There are a variety of static interface consistency checks and tools that could be selected. There are 

scripting languages and tools designed to easily tailor consistency checks, analogous to software bug-

finder tools.  The SRR models and analysis specifications need not necessary contain all these details, but 

they should have sufficient detail to specify what should be run at some point to satisfy or verify 

requirements. 

 

Example: The OSATE AADL Integrated Development Environment performs model legality rule 

checks defined in the AADL standard.  This includes checking type-compatibility between the two 

ends of a connection. 

 

Example: A tool that verifies, for each data item required by a component, there exists at least one 

provider of that data in the system. 

 

Example: A tool that verifies the binding of a connection through a sequence of platform resources 

is consistent with the hardware connections and categories of those resources. 

 

Example: A tool that verifies the FACE execution profile declared as a property of a software 

component is consistent with the FACE execution profile declared by the resource to which that 

software component is bound. 

 

Example: A tool that uses an AADL annex sublanguage to declare pattern rules and traverses the 

model to verify those rules are satisfied. 

5.3.6 SRR Interface Behavior Consistency Analysis 

Interface behavior consistency analysis can be applied to functional, software, and hardware viewpoints. 

There are currently several standard ways to specify run-time behavior in AADL models. 

• AADL properties of features can be used to select among a discrete set of communication 

protocols and their properties.  Static interface consistency checks can verify that communication 

protocols are consistent between the communicating components. 

• AADL Behavior Annex declarations are used to declare state transition systems with guards and 

actions, where transitions can be triggered by various kinds of events.   Functional behaviors can 

be declared in either types or implementations for any category of component.  This is the 

primary language feature that should be used to model general functional behavior. 
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• AADL system operating modes are used to declare architectural reconfigurations that occur at 

run-time.  Both types and implementations may declare modes and transitions between modes 

that are triggered by run-time events.  Most AADL declarations have an in modes clause that allow 

users to say that properties may have different values in different operating modes or that 

different sets of connections and threads are active in different operating modes.   Identify 

Variation Points, Configurations, and Dynamic Behaviors provides guidelines to distinguish cases 

where AADL modes should be used versus other mechanisms. 

• AADL Error Modeling Annex declarations are used to declare fault, error and failure behaviors in 

components and architectures.  Guidelines for these features are provided in SRR Reliability, 

Availability, and Failure Analysis and SRR Functional Hazard Assessment. 

• SysML interactions, displayed using sequence diagrams, are considered a kind of behavior.  These 

map to AADL flows.  AADL flows are used in many kinds of analyses, and these are discussed 

separately with each analysis rather than in this subsection. 

Behavioral consistency analysis checks a model to see if a set of properties is true for the composition of 

multiple component behaviors.  Behavior analysis verifies behavioral assertions over the system state 

space, such as assertions that can be expressed in a temporal logic.  The specific kinds of behavioral 

assertions that can be verified, and the way in which those assertions are declared, will depend on the 

selected tool. 

Behavior analysis is an example of an analysis where there is a wide range of choices to make for model 

content and tools.  It is only practical to model selected behaviors with selected degrees of precision and 

uncertainty.  Select Cost-Effective Modeling & Analysis provides guidelines for making such decisions. 

Example: Behavior annex declarations are used to specify a state machine that models the life 

cycle of a component.  At SRR, the identified component states are Stopped, Initializing, Running, 

Finalizing.  The plan calls for connections to be modeled, and the set of life cycle states refined, at 

PDR for the exchange of events between components that would cause changes in component life 

cycle states.  A tool is selected to analyze the system of interacting state machines to determine if 

there exists any order in which components can be initialized that results in failure to  provide data 

needed for other components to complete their initialization.  This behavior was selected for 

modeling because previous projects had experienced intermittent deadlock during system start-

up and shut-down, the root cause defect was difficult to track down and fix, and little additional 

model content needs to be added to the core architecture model to enable this analysis. 

5.3.7 SRR Resource Loading Analysis 

The DAG SRR criteria include determining that software functionality is consistent with software sizing 

estimates and resource loading.  Model content and preliminary analysis of resource loading using 

budgets or estimates for demands and supplies should be performed sufficient to satisfy that criterion.  

Resource loading analysis is typically applied to a combination of software and hardware viewpoints, 

including standard AADL binding properties between the two viewpoints. 
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Resource loading analysis uses properties that declare demands and supplies for various kinds of 

resources, where some components can supply certain kinds of resource units that other components 

demand.  The AADL core standard defines processor capacity (Millions of Instructions Per Second), 

communication bandwidth (Bits Per Second), and memory (Bytes) resource units.  Tools can support 

additional kinds of units, such as Power and Mass used for Size, Weight, and Power (SWaP) assessment.  

AADL binding declarations are used to associate demands with supplies, e.g., a software component with 

a MIPS demand is bound to a processor that can supply MIPS. 

Example:  The system integrator uses data from previous projects to estimate software demands 

for Millions of Instructions Per Second (MIPS) and byes of memory; and to estimate execution 

environment supplies for those resources.  These are declared as properties of software and 

hardware systems, processes, and processors.  Binding declarations capture preliminary 

allocations of software to hardware.  Thresholds (budgets) are established that will cause analysis 

tools to issue warnings and errors.  A utilization analysis tool is specified that will provide sensitivity 

data so that technical risk due to uncertainty can be tracked.  The initial analysis results are 

reviewed at SRR to show that software functionality is consistent with software sizing estimates 

and resource loading. 

Example: A system must process significant amounts of complex sensor data.  Some of this is done 

using Field-Programmable Gate Arrays (FPGA), and Configurable Logic Blocks (CLB) are important 

resource units to manage.  Data from previous projects that is used to make initial estimates for 

network loading was recorded in Frames per Second (FPS) rather than Bits per Second (BPS).  The 

system integrator, in their analysis specification, identifies a tool that allows the user to define 

their own resource units for resource loading analysis. 

5.3.8 SRR Latency Analysis 

Latency analysis provides information about the timing of data that is flowing through multiple 

components in a system.  Data flows through a system that have latency requirements should be declared 

in the model using AADL flow declarations. 

Latency analysis can be applied to functional, software, and hardware viewpoints where information flows 

are modeled. 

AADL flow declarations (a sequence of data and event flow connections between components) should 

be used to specify end-to-end dependencies between information arriving at one flow source of the 

system boundary and departing at another flow sink of the system boundary.  These declare end-to-end 

(system input to system output) flows of data and events through the system. 

The AADL standard Latency property should be used to specify end-to-end latency and jitter requirements 

on flows.  This specifies the interval of time between when information arrives to the system and when it 

affects the information leaving the system (departing information may also depend on other information 

flows and internal state).   A standard Actual_Latency property is available for measured latency when 

such data becomes available. 
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AADL allows a decomposition of a system end-to-end flow into sub-flows through flow paths of capability 

components.  Sub-flow latency and throughput properties establish derived timing requirements 

(budgets) for subsystems and components.  

How time is managed in a system is a fundamental architectural decision, e.g., globally synchronous, 

globally asynchronous, globally asynchronous locally synchronous (GALS).  If the time frame-of-reference 

for all component input and output events is not global Newtonian time, then AADL features to declare 

synchronization domains and their properties and scopes should be used to identify the different time 

frames of reference for different subsystems and interfaces between time domains. 

A simple form of latency analysis is to check consistency between end-to-end flow requirements and sub-

flow requirements derived from them.  Analysis that verifies consistency between system latency 

requirements and derived/allocated subsystem latency requirements may be desired at SRR. 

Example: An information flow from sensor to display has the requirement that sense-to-display 

(end-to-end) latency shall not exceed 1000ms.  During requirements analysis developers decide to 

decompose this into derived timing requirements: (1) the sub-flow latency through the sensing 

function shall not exceed 200ms; (2) the sub-flow latency through the fusion and tracking function 

shall not exceed 600ms; and (3) the sub-flow latency through the cockpit display function shall not 

exceed 250ms.  An analysis of the model reveals that the sum of the sub-flow latencies exceeds 

the maximum allowed sense-to-display latency. 

Throughput metrics used in timing requirements, such as sampling rates and messages-per-second, 

should be clearly defined.  Property sets for throughput metrics should be declared as needed when 

standard AADL properties are not defined.  Properties that relate incoming and outgoing throughput 

metrics with other system capacity requirements should be defined where needed.  Properties to specify 

behavior under overload and failure conditions should be defined where needed. 

Example: A Situation Awareness (SA) system has several sensors that provide object detections at 

various rates measured in detections-per-second.  The SA system also has a requirement that it 

manage a minimum number of fused tracks for the combined incoming events.   The ACVIP plans 

call for a set of properties to be declared in an AADL property set together with a technical 

specification of throughput and capacity metrics in terms of these properties. 

Note: Average throughput rate and peak burst rate are different metrics.  For example, there 

might be a steady-state requirement to process 10 object detections-per-second and a burst 

requirement to process 200 object detections in a 10 second interval that is preceded and followed 

by 10 second intervals having no more than 20 detections.  Burst requirements are sometimes 

specified as a minimum number that shall be queued without loss for a specified steady-state 

throughput assuming a given inter-arrival time distribution.  Queuing protocol properties can be 

used to specify overload behavior, e.g., in the above example sensors might be prioritized so that 

data is discarded from low-priority sensors rather than from high-priority sensors during overload 

conditions. 
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5.3.9 SRR Reliability, Availability, and Failure Analysis 

SRR is an opportunity to assess whether technical requirements for Reliability, Availability, and 

Maintainability are flowed to specifications, although the DAG does not call for analysis until PDR. [45]  

There are several kinds of analysis that can be applies in this area.  This handbook will discuss  PDR Failure 

Modes and Effects Analysis, PDR Fault Tree Analysis, PDR Reliability Block Analysis, and PDR Markov 

Analysis in later sections. 

Reliability, availability, and failure analyses can be applied to functional, software, and hardware 

viewpoints. 

The SRR model should capture reliability and availability requirements using features of the AADL Error 

Modeling Annex.   Only the features of the annex and details of the model necessary to capture 

requirements are needed at SRR.  Additional model content can be added later to enable the selected 

analyses. 

Figure 11 AADL Error Modeling Annex basic concepts illustrates some key concepts and terms that will be 

used in this handbook.  Each component in a model may have an error model associated with it using an 

annex declaration.  An error model takes the form of a state machine, where states and events may be 

typed and transitions may have both stochastic and discrete semantics.  A transition between error states 

may be triggered, for example, by a random internal event such as a hardware fault or an external discrete 

event such as an AADL system operating mode change. 

 

Figure 11 AADL Error Modeling Annex basic concepts 

Different error models for different components may interact with each other using three primary 

mechanisms.  Error events that occur in one error model may propagate to another error model according 

to the structure of the AADL model, for example through an AADL connection between the two 

components.  Discrete behavioral AADL events may also propagate into or out of an error model according 

to AADL event connections.  Finally, an error model for a component may be declared as a composition 

of the error models of its subcomponents, which defines the error states of the component as a function 

of the error states of its subcomponents. 

error state  
A: error type 

error state 

B: error type 

error event 
E: error type 

component error model 

error propagation event 

E: error type 

behavioral event 

composed component  

error model 
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The AADL Error Modeling Annex provides features that can be used for a variety of different analyses.  

The exact interpretation of these features depends on the specific analysis.  For example, an AADL error 

state can model a hazard state, a latent fault state, an internal error state, a failure state, or a state in 

which the component is undergoing repair, depending on the analysis tool and purpose of the model. 

The AADL Error Annex includes an ErrorLibrary package that contains a set of pre-declared error types 

and a few simple pre-declared error models.  Elements from this standard ErrorLibrary should be 

preferred where suitable.  ACVIP planners should consider the exact interpretations and capabilities of 

available tools to determine detailed guidelines. 

Example: Figure 12 Example Reliability Requirement Declared using Error Modeling Annex 

Features illustrates how reliability requirements can be specified in an SRR model. 

 

Figure 12 Example Reliability Requirement Declared using Error Modeling Annex Features 

Example: Figure 13 Example Availability Requirement Declared using Error Modeling Annex 

Features illustrates how availability requirements can be declared in an SRR model. 

 

Figure 13 Example Availability Requirement Declared using Error Modeling Annex Features 

5.3.10 SRR Functional Hazard Assessment 

Hazards should have been reviewed and mitigating courses of action should have been allocated within 

the overall system design.  Certification requirements should be understood [45]. 

DoD System Safety Process provides an overview of the DoD safety process.  Even if the ACVIP 

Management Plan does not call for modeling and analysis to be used as evidence for certification 

authorities, modeling and analysis activities should align with required certifications in order to reduce 

-- The probability of failure during an 8 hour mission 
-- shall not exceed 1.0E-4. 
annex EMV2 {**  
    use behavior ErrorLibrary::FailStop; 
    properties 
        EMV2::OccurrenceDistribution => 
                [ ProbabilityValue => 1.0E-4; Distribution => fixed; ] 
             applies to FailStop; 
        EMV2::ExposurePeriod => 8.0 applies to Operational; -- Time in hours 
**} ;  

-- The fraction of the fleet that is available on the flight line for 
-- immediate dispatch at any point in time shall not be less than 90%. 
 annex EMV2 {**  
  use behavior ErrorLibrary::FailAndRecover; 
  properties 
           EMV2::OccurrenceDistribution =>  
                     [ ProbabilityValue => 0.9; Distribution => fixed; ]  
                 applies to Operational;        
 **} ; 



 
71 

  

Copyright, 2021, Adventium Labs. 

project risk and rework due to problems found during certification reviews.  Additional guidelines when 

modeling and analysis are to be submitted as evidence are found in Support Certification Approvals and 

Readiness Reviews.   

Functional Hazard Assessment (FHA) is a safety assessment performed for the overall system and its 

intended operations and environment of use [33].  FHA establishes the overarching system safety 

technical requirements for the system.   FHA or its equivalent is required by system safety standards (e.g., 

Identify and Document Hazards in Figure 7).  

Functional hazard assessment is applied to a functional viewpoint.  This initial assessment is used to derive 

safety requirements to be satisfied or verified in data, software, and hardware architecture viewpoints.  

Analyses can be applied at these later levels-of-refinement to verify that identified functional hazards are 

acceptably mitigated. 

The EMV2 property set defined in the AADL Error Modeling Annex declares a Hazard property.  This 

property has a record type that can record several pieces of information about a hazard, including severity, 

likelihood, risk, and design assurance level.  The Hazard property can be associated with any category of 

Error Modeling Annex feature.  This handbook suggests that error states be defined to represent hazards, 

with information about each hazard state declared using a Hazard property, but the conventions of the 

selected tool will take precedence. 

An Error Annex property set MILSTD882 declares constants for Severity that range from Negligible to 

Catastrophic.    The MILSTD882 property set declares constants for Likelihood that range from Frequent 

to Improbable.  A safety policy defines a method for determining risk as a function of severity and 

likelihood and establishes acceptable risk thresholds based on that determination.  A tool can determine 

if there is any combination of severity and likelihood that violates a given risk assessment and acceptance 

policy. 

 

The SRR model should include an initial allocation of mitigating courses of action needed to reduce risks 

to acceptable levels.  The SRR model should capture in some way any mitigations introduced for each 

hazard state.  These are derived safety requirements that should appear in the SRR model. The guidelines 

provided in Abstraction, Elaboration, and Conformance and SRR Bidirectional Traceability Established may 

be used for this purpose. 

Example: A Situation Awareness (SA) system has several sensors that provide object detections.  

The functional hazard assessment identifies a failure to advise the crew of obstacles as 

hazardous. A severity of 1 is assigned.  A likelihood of D is assigned due to an included sensor 

fusion capability that will reduce false positives.  

 

Example: Figure 14 Risk Assessment Matrix from MIL-STD-882E (from MIL-STD-882E Department 

of Defense Standard Practice for System Safety) illustrates how qualitative assessments of 

SEVERITY and PROBABILITY (likelihood) are combined to assess risk.  DoDI 5000.02 Operation of 

the Defense Acquisition System requires “that the associated risks have been accepted by the 
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following acceptance authorities: the [Component Acquisition Executive] CAE for high risks, 

Program Executive Officer-level for serious risks, and the Program Manager for medium and low 

risks [49].” 

Figure 14 Risk Assessment Matrix from MIL-STD-882E 

 

5.3.11 SRR Cross Domain Analysis 

Security Assessment and Authorization provided an overview of the DoD cybersecurity process.  Even if 

the ACVIP Management Plan does not call for modeling and analysis to be used as evidence for 

certification authorities, modeling and analysis activities should align with required certifications in order 

to reduce project risk and rework due to problems found during certification.  Additional guidelines when 

modeling and analysis are to be submitted as evidence are found in Support Certification Approvals and 

Readiness Reviews.   

Cross domain analysis applies to the data viewpoint and to flows of information between elements of 

functional, software, and hardware viewpoints. 

Model developers should define the system boundary using one of the techniques described in Describe 

Models to be Developed and Delivered and SRR General Guidelines. The model should include all 

entities outside the system boundary, i.e., in the system’s environment, that interact with the system 

and that serve as a consumer or provider of classified information. While these entities could represent 

human users, they are more likely to represent the devices with which these users interact with the 

system. The model developer should keep in mind that while the user may be privileged to view 

information at multiple levels of security simultaneously, that user is more likely to view each level on a 

separate device, so the model should include each device.  
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Next the model developer should associate with each external entity the highest security level of 

information to be transferred between that entity and the system. The model developer may create this 

association using an AADL property or by other means.  

At the level of detail of an SRR, the system may be a black box and model analysis may simply issue 

errors that requirements are not satisfied by the model. The objective for SRR is to determine the need 

for a cross domain solution (CDS) given the system’s environment.  In a different environment, analysis 

using the same system may produce different results. 

Example: The mission system on an air vehicle platform processes information received from 

sensors and radio networks and also interacts with passengers in the cabin, who are cleared at a 

lower security level than the cockpit crew. With no other details about the system 

implementation, analysis confirms that the mission system observes information at multiple 

levels of security.  The conflicts identified in the analysis results provide information about 

requirements for cross domain solutions. 

MILS analysis is an example of an analysis that may not be performed because the system has no MILS 

requirements. 

5.3.12 SRR Risk Management Framework Analysis 

Programming architectures and security requirements should have been identified.  Certification 

requirements should be understood.   

RMF analysis applies to the data viewpoint and to any kind of flow of information or events between 

elements of functional, software, and hardware viewpoints. 

Model developers should define the system boundary using one of the techniques described in Describe 

Models to be Developed and Delivered and SRR General Guidelines. The model should include an 

abstract representation of external consumers and providers that communicate with the system over 

this boundary. 

Next the model developer should associate with each external consumer or provider the information 

flows between that entity and the system, and for every information flow, specify in the model the 

mission impacts given a loss of Confidentiality, Integrity, and Availability (CIA) of that information flow. 

The model developer may create these associations using an AADL property or by other means. This 

activity supports Step 1 of the RMF, “Categorize the System”.  

At the level of detail of an SRR, the system may be a black box. The objective for SRR is to determine the 

CIA impacts for information flows processed by the system as required by the system’s environment.  

Applying analysis tools to determine if appropriate security controls are included where required within 

an architecture and cannot be bypassed or tampered with may only produce error messages at SRR. 

5.3.13 SRR Trade Studies Requirements 

System performance specification has sufficiently conservative requirements to allow for design trade 

space.  Risk management plans should be in place and technical risks identified.  The system performance 
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specification should be adequately expanded to reflect tailored, derived and correlated design 

requirements.  Product support plan and sustainment concepts should have been defined with the 

corresponding metrics. [45]   Meeting these criteria can be addressed by identifying architectural 

alternatives and performing trade studies.   

Trade studies may involve multiple kinds of analysis.  The architecture viewpoints and their content will 

depend on the set of analyses chosen for a trade study. 

The guidelines for Configurable Models and Variation Points should be used to model architectural 

alternatives to be evaluated during trade studies.  This establishes at SRR an initial design space to be 

explored during future trade studies. 

Ideally an analysis tool is available for each key performance parameter (quality metric) to be assessed 

during a trade study.  Where qualitative or other manual assessments are performed for a metric, care 

should be taken that the metric may depend on the overall model configuration and not just a specific 

component.   The guidelines for Configurable Models and Variation Points can be used to establish a 

naming convention for model configurations. 

Example: A contract calls for a trade study of weight v. power v. reliability v. four alternative 

bundles of mission system functionality.  Plans to conduct this trade study are to be reviewed at 

SRR.  The SRR model captures alternatives for redundancy by declaring multiple implementations 

for major compute platform (execution environment) subcomponents of the system. Hardware 

components in these alternative implementations have weight and power properties and AADL 

Error Annex error models declared.  The SRR model captures the alternative bundles of 

functionality by declaring multiple implementations for major software sub-systems of the overall 

mission system. The contractor uses a trade space exploration framework to automate trade 

studies as follows. 

• The framework recognizes multiple implementations for a subcomponent type as 

candidate variation points. 

• The framework recognizes properties as candidate variation points. 

• The framework allows users to interactively select subsets of implementations and 

subsets of properties and their ranges to define the architectural design space to be 

explored. 

• The framework automatically enumerates configurations within the selected architectural 

design space. 

• For each configuration, the framework runs an automated software-to-hardware binding 

tool and then weight summing, power summing, and fault tree reliability analysis tools. 

• The framework provides a trade space visualization and exploration graphical interface 

that allows users to iteratively refine the scope and parameters of the trade study. 

• The trade study is re-executed as component models are updated by suppliers.  The 

evolving results are available to contractor and customer personnel using a web interface. 
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5.4 System Functional Review 
The System Functional Review (SFR) establishes the functional baseline.  This describes the system’s 

performance (functional, interoperability and interface characteristics) and the verification required to 

demonstrate the achievement of those specified characteristics. The functional baseline is directly 

traceable to the operational requirements contained in the Initial Capabilities Document (ICD) and draft 

Capability Development Document (CDD). 

The SFR criteria most relevant for ACVIP are to document allocated requirements optimized through 

analyses (including functional analysis and sensitivity analysis) and perform trade studies and risk 

assessments.  

5.4.1 SFR General Guidelines 

A functional architecture is a different viewpoint than a software or hardware architecture viewpoint.  

Layering, Extension, and Refinement provides guidelines on modeling a functional architecture viewpoint.  

That section also provides guidelines on associating functions with subsystems and components that were 

identified in the software and hardware architecture viewpoints. 

A number of analyses can be applied to functional as well as software and hardware architecture 

viewpoints.  There are no specific analyses cited in the DAG, but ACVIP planners should consider analyses 

that address goals and requirements.  Planners should consider what functional analyses will be required 

at future milestones and identify model content that should be included in the SFR functional architecture 

in order to maintain traceability from SRR to PDR.  Since minimal information will be present in SRR 

software and hardware architecture viewpoints, analyses should be considered that can be done 

independently of the software and hardware viewpoints. 

5.4.2 SFR Interface Static Consistency Analysis 

Example: A functional architecture is developed that consists of abstract type declarations 

for functions whose features identify abstract types of information that may be needed as 

inputs or can be provided as outputs.  Otherwise, the semantics of a function is defined by 

reference to a customer-provided ontology of functions.  Extends and refines declarations 

are used to decompose a high-level function into multiple simpler functions.  There are no 

connections or bindings.  A tool is applied to verify that, for each kind of information needed 

by a function, that kind of information is provided from some feature found in the system 

interface or some other function in the system. 

5.4.3 SFR Interface Behavior Consistency Analysis 

Example: A functional architecture is developed that uses a tool-specific Annex to declare 

assumptions (preconditions) a function makes about its inputs and guarantees 

(postconditions) it makes about its outputs when those assumptions are true.  The inputs of 

functions are satisfied by connections from the system interface or outputs of other 

functions.  A function will operate correctly if the assumptions declared on all of its inputs 

are satisfied by the guarantees declared on the sending side of its connections. A tool is 
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applied to verify that all assumptions made by each function is satisfied by guarantees made 

by other functions on which it depends. 

5.4.4 SFR Failure Modes and Effects Analysis 

Example: A functional architecture is developed that includes error annex modeling of 

functions and declarations of information dependencies between functions.  A preliminary 

functional failure modes and effects analysis is performed to help assess whether functional 

mitigations in place reduce risk to an acceptable level. 

5.5 Preliminary Design Review 
The Preliminary Design Review (PDR) ensures the preliminary design and basic system architecture are 

complete. It provides the acquisition community, end user and other stakeholders with an opportunity to 

understand the trade studies conducted during the preliminary design, and thus confirm that design 

decisions are consistent with the user’s performance and schedule needs and the validated Capability 

Development Document (CDD). The PDR establishes the allocated baseline. The allocated baseline 

describes the functional and interface requirements to a level in the system architecture sufficient to 

define hardware configuration item requirements distinct from software configuration item 

requirements, together with the verification required to demonstrate achievement of those 

requirements. [45]  The following items from the PDR criteria apply generally to all PDR modeling and 

analysis. 

• All risk assessments and risk mitigation plans have been updated, documented, formally 

addressed and implemented. 

• Risks are at an acceptable level to continue with detailed design. 

• Approach/Strategy for test and evaluation defined in the Test and Evaluation Master Plan (TEMP) 

accounts for risks with a mitigation plan; necessary integration and test resources are 

documented within the TEMP and current availability align with the program IMS.  See Perform 

Model-Based Testing. 

• Analysis of system performance is complete and assessed to meet requirements. 

• Preliminary design (hardware and software), including interface descriptions, is complete and 

satisfies all requirements in the functional baseline. 

• Computer system and software design/development approach have been confirmed through 

analyses, demonstrations, and prototyping in a relevant environment. 

5.5.1 PDR General Guidelines 

The PDR model will be an elaboration of the SRR model that fully identifies software and hardware 

configuration items and their interfaces.  The guidelines in Abstraction, Elaboration, and Conformance 

and SRR Bidirectional Traceability Established should be followed to establish conformance between PDR 

and SRR models and analysis results. 

A basic ACVIP guideline is to increase precision, reduce uncertainty, and maintain consistency between 

the model content and analyses going from SRR to SFR to PDR to CDR.  Where an analysis listed in System 
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Requirements Review is not listed here, the recommendation is to review and refine those models and 

repeat those analyses with improved precision and certainty. 

A PDR model may contain process, subprogram group, and data declarations (software objects); and 

virtual processor, processor, virtual bus, bus, device, and memory declarations (hardware objects).  

System objects that have no subcomponents may be used to model either software (if bound to 

something else) or hardware (if something is bound to them).  Abstract objects should be reserved for 

objects in the environment of use, not in the system being acquired.  Subprograms, threads, and thread 

groups should be modeled where this is needed for a planned structural analysis or when they are 

separate deliverables, but otherwise this may be unnecessary detail at the structural level of abstraction. 

Many PDR analyses use information about which software components and connections are bound to 

which hardware components, either explicitly declared or automatically generated.  Analysis results will 

be incomplete if binding declarations are incomplete, which will occur wherever binding decisions are to 

be made by the software and system integrator.  Analysis results may be different for different possible 

bindings and for different possible modes of operation.  Where software and system integrators are to 

make final binding decisions later in development, allowed binding properties, or virtual processor or 

virtual bus or system models of resources, may allow analysis to be performed at PDR that can then be 

elaborated at CDR. 

5.5.2 PDR Interface Static Consistency Analysis 

Computer system and software architecture designs should have been established.  All Computer 

Software Configuration Items (CSCIs), Computer Software Components (CSCs), and Computer Software 

Units (CSUs) should have been defined. Software Requirements Specifications (SRSs) and Interface 

Requirement Specifications (IRSs), including verification plans, are complete and baselined for all CSCs 

and satisfy the functional requirements.  Interface control documents trace all software interface 

requirements to the CSCIs and CSUs.  All external interfaces to the system, and all internal interfaces of 

the system (system element to system element), as addressed at the SRR, should have been documented 

and modeled. [45] 

Software components should be bound to hardware subsystems or components.  Software components 

may be bound to virtual layers that are declared as virtual buses or virtual processors in AADL.  Such 

virtual layers may also be bound to other virtual layers or physical resources such as processors and buses.  

These binding declarations specify the resources and execution environments for software components.  

Analyses verify that properties of software dependencies on hardware, such as use of specified operating 

system, are satisfied by software bindings to hardware.  

Example: A family of systems will support software applications that use either the FACE™ 2.1 

ARINC 653 safety profile or the FACE™ 3.0 POSIX security profile.   The ACVIP plan calls for the 

creation of a property set that can be used to declare the execution environment required by a 

software component and provided by an AADL virtual processor or processor.  A conformance 

checking tool that operates on a set of syntactic rules is selected.  The ACVIP plan calls for the 



 
78 

  

Copyright, 2021, Adventium Labs. 

creation of a set of rules that will verify consistency between the execution environment properties 

of a software component and the virtual processor or processor to which it is bound. 

5.5.3 Interface Behavior Consistency Analysis 

At PDR, software and hardware components are identified.  If connections over which events flow and 

preliminary behavior models exist, tools can be applied to verify whether or not a planned set of 

correctness assertions  are satisfied. 

Example: A refinement of the analysis specification at PDR selects a model-checking tool to verify 

that deadlock will not occur during initialization, restart, and shut-down during the life-cycle of 

any component for any possible sequence of triggering events. 

Example: A refinement of the analysis specification at PDR selects a simulation tool to verify that 

a set of identified functional scenarios are correctly executed.  The tool selection decision was in 

part based on a desire for a tool capability to perform user-guided simulation. 

5.5.4 PDR Failure Modes and Effects Analysis 

Failure Modes and Effects Analysis is one kind of analysis that can satisfy SRR Reliability, Availability, and 

Failure Analysis requirements. 

Functional failure mode, effects, and criticality analysis (FMECA) should be completed [45].  Functional 

FMECA will require a functional architecture be modeled as discussed in SFR General Guidelines. 

Failure Modes and Effects Analysis (FMEA) can be used to specify error-handling capabilities that are 

required to mitigate risks identified by hazard assessment.  FMEA begins by identifying errors that may 

propagate into a system from the external environment and internal errors that may occur due to the 

nature of a component.   Analysis of the model determines how these errors propagate from component 

to component given declared error-handling requirements.  Analysis identifies errors and propagation 

paths that result in system failures.   

FMEA is typically done in a bottom-up manner.  System input errors and internal errors are first identified 

for the lowest-level components in the model.  Analysis then propagates these through dependent 

components to system outputs.  Where component models are obtained from suppliers, the models they 

deliver for virtual integration should include the necessary declarations. 

AADL Error Model features should be used to declare errors that may occur within capabilities or 

propagate into or out of capabilities.  AADL Error Model features exist to declare how a capability should 

respond to incoming and internal errors, for example by masking them or by outputting less severe errors. 

ACVIP plans should include tasks to assure the consistency between FMEA analysis and any Fault Tree 

Analysis (FTA) or Reliability Block Diagram (RBD) analysis that is done.  Failure modes and effects identified 

during FMEA should trace to basic events and faults in any FTA or RBD analysis that is done. This should 

be done using guidelines from Abstraction, Elaboration, and Conformance and SRR Bidirectional 

Traceability Established. 
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5.5.5 PDR Fault Tree Analysis  

Fault Tree Analysis is one kind of analysis that can satisfy SRR Reliability, Availability, and Failure Analysis 

requirements.  Fault tree declarations can be used to specify redundancy and independence-of-failure 

among different capabilities that are required to mitigate risks identified by hazard analysis. 

Note: SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil 

Airborne Systems and Equipment assumes a system safety process that starts with overall aircraft 

acquisition.  An FTA analysis may be performed at the functional level, but an FTA analysis may 

also only be used for system hazard assessment after the aircraft system structure has been 

decomposed to a level of abstraction that corresponds more closely to the PDR model of this 

handbook.  ACVIP planners should evaluate the level of abstraction at which FTA is first performed 

based on the system being acquired and its system safety plan. 

 

Fault tree analysis can be applied to functional, software, and hardware viewpoints. 

 

Example: Functional hazard assessment (FHA) has identified runway excursion due to a failed 

capability to stop the aircraft as a hazard whose risk must be mitigated.  Two redundant 

capabilities to stop the aircraft on the ground are specified, a wheel braking capability and a thrust 

reverse capability.  The pilot must receive advance notice of brake system failure in order to 

properly apply thrust reverse as a back-up capability.  Figure 15 Risk of runway excursion with 

redundant capabilities to stop aircraft shows the fault tree that specifies these requirements.  

Implicit in this specification is that there be independence-of-failure between wheel braking, 

notification to the pilot that the wheel brake system has failed, and thrust reverse capabilities. 

 

 
Figure 15 Risk of runway excursion with redundant capabilities to stop aircraft 

 

Loss of brake failure 
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The following paragraphs provide general guidelines for declaring models from which fault trees can be 

automatically generated.  Detailed guidelines should be based on the selected tool. 

Tools that perform FTA will generate and analyze one fault tree for each selected hazard.  Recall from SRR 

Functional Hazard Assessment that an error model with hazard states is the recommended way to declare 

hazards.  Such hazard error states can be designated as roots of fault trees to be generated and analyzed. 

Error models are also declared for components that may undergo intrinsic failures, which is to say 

components associated with fault tree basic events.  The initial error state for each component is an 

operational state.  A fault tree basic event is represented by a transition into an error state that is 

designated as a failed state.  Where quantitative analysis is to be done, properties declared for the 

transitions from operational to failed states are used to determine failure probabilities for basic events.  

Redundancy in a model is typically declared using composite error models – for example, a system is 

declared to be in a failed error state when 2 ormore of its 3 redundant subcomponents are in a failed 

error state.  Voting protocols within a component are typically declared using Error Model Annex 

conditional expressions on error propagations and error transitions in the error model for the 

component. 

The structure of a fault tree itself can be automatically generated from this information based on all 

possible ways that errors might propagate within the architecture model, e.g., via connections or bindings 

or shared accesses.  One such fault tree should be generated for each root hazard state identified during 

FHA and selected for fault tree analysis.  

Qualitative analysis can be performed to identify single points of failure.  Cut set analysis can identify, for 

each system failure, sets of fault tree basic events that will result in that system failure mode.  Any system 

failure that has a cut set with only one element has a single point of failure, identified by the element in 

that cut set.  These results can be checked against severity, likelihood, and safety policies identified during 

hazard analysis. 

Example: The safety requirements for an air vehicle include the safety policy that all hazards that 

have a severity of Critical or Catastrophic must be mitigated by redundant capabilities for which 

there are no single points of failure. A cut set analysis of a fault tree generated from the AADL 

model is used to verify this. 

Where fault rates can be determined, a quantitative analysis can be performed to determine a probability 

of failure for each root of each fault tree.  Importance and sensitivity analysis can be performed. 

5.5.6 PDR Reliability Block Analysis 

Reliability block analysis is one kind of analysis that can satisfy SRR Reliability, Availability, and Failure 

Analysis requirements.   Estimate of system reliability and maintainability should be updated, based on 

engineering analyses, initial test results, or other sources of demonstrated reliability and maintainability. 

RBD analysis can be applied to functional, software, and hardware viewpoints. 
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Reliability block analysis determines reliability for a capability based on the reliabilities of the other 

capabilities that it depends on and information about redundancy among those other capabilities.  An 

RBD for a capability is often represented as a graphical AND/OR diagram as illustrated in Figure 16.   RBD 

may be considered as an alternative to FTA.  Traceability between hazards identified by FHA and 

capabilities whose failures contribute to those hazards should be captured. 

 

Figure 16 Capability fails if (SATCOM OR SINCGARS) AND Cockpit Audio fail 

The AADL Error Annex provides features that should be used to declare properties and dependencies for 

RBD analysis.   One approach is to use AADL composite error model features to declare a RBD structure 

for a system or capability in terms of sub-capabilities declared as AADL subcomponents.   An AADL 

composite error model allows the error states of a component to be declared as an AND/OR function of 

the error model states of its subcomponents.  RBDs and operational-versus-failure states for any sub-sub-

capabilities are determined recursively. 

 

Note: This idiom requires that capabilities on which multiple other capabilities depend be modeled 

as shared subcomponents.  Modeling of shared sub-capabilities in higher-level RBD specifications 

may become complex when using this RBD modeling idiom. 

 

Example: A situation awareness system includes redundant sensors.  The sensors are combined in 

a voter pattern so that when too many sensors fail, the sensing capability is considered failed. The 

RBD analysis will determine the reliability of the sensor configuration (the probability that the 

sensing capability will be available throughout a mission scenario). 

5.5.7 PDR Markov Analysis 

Markov Analysis is one kind of analysis that can satisfy SRR Reliability, Availability, and Failure Analysis 

requirements.   Markov analysis can be applied to functional, software, and hardware viewpoints. 

FTA and RBD assume that a component begins each mission in a fully functional state.  When a failure 

occurs, that component remains failed for the duration of the mission.  In contrast, Markov analysis can 

be applied to systems that have degraded modes of operation, suffer transient errors, or can reconfigure 

and recover. 

In system safety applications, continuous time Markov analysis is often used.   Two forms of continuous-

time Markov analysis can be applied, transient and steady-state.   

SATCOM 

SINCGARS 

Cockpit Audio 
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1. Transient Markov analysis requires mission duration as an input.   Transient analysis determines, 

for each error state a system of components might enter, the probability that it has entered a 

state at least once by the end of the mission scenario.  Analysis can also determine values such as 

the expected number of times a system error state has been entered during the mission.  

Transient analysis is typically used to estimate probabilities for system failures or degraded modes 

of operation during a single mission. 

2. Steady-state Markov analysis assumes the component error models have cyclic paths of 

transitions through every error state.  The assumed mission duration is infinite.  Steady-state 

Markov analysis determines the asymptotic probability of finding the system in a given system 

error state.  Analysis can also determine values such as the mean time between visits to a system 

error state.  Steady-state analysis is typically used to determine availability over an indefinite 

period of time, where the error models include models of maintenance and repair events as well 

as system error events.   

 

The guidelines from PDR Fault Tree Analysis can be used for Markov analysis.  Additional error model 

structures will be supported by a Markov analysis tool, such as error models that transition back-and-

forth between operational and failed states. 

Markov analysis can be computationally intensive and is subject to the state space explosion problem.  Its 

use should be confined to high-level and simple models, or to analysis of individual components where 

such behaviors are important to estimate component error and failure probabilities that are then used in 

other more tractable analysis applied to the entire system.  Tractable Markov analysis for a complex 

system model can be achieved by deriving from the complex model a simpler and more abstract one that 

captures the essential error behaviors.  As with all abstractions, this incurs an obligation to assure that 

analysis results obtained from the simpler more abstract model are sufficiently accurate for the original 

more complex model. 

5.5.8 PDR Cross Domain Analysis 

If the model analysis at SRR indicates the need for a CDS, then prior to PDR or CDR the model developer 

should introduce the CDS into the model along with enough system subcomponent connection detail to 

show that the CDS effectively partitions the system architecture by security level. Repeat the model 

analysis performed at SRR to demonstrate that as the model developer adds details to the model, no 

system subcomponent, except the CDS itself, processes information flows for more than one security 

level.  

An objective at this milestone is to support selection of the CDS from the Unified Cross Domain Services 

Management Office (UCDSMO) Baseline List of Approved Solutions. The model developer models the 

CDS as a black box since the CDS already exists, and model analysis should reveal the information 

security levels to be processed by the CDS. The model developer may wish to add more detail to support 

the selection decision, such as the message formats, the performance envelope, and power, size, and 

weight budgets. 
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5.5.9 PDR Risk Management Framework Analysis 

By PDR or CDR, the model developer has created a software architecture to process the information 

flows identified at SRR. With these new details, model analysis should confirm that the software 

architecture does not mix information flows with different CIA impacts in the same process space. In 

particular, model analysis should confirm that if a software process contains subcomponents (e.g., 

threads) that process information flows of different criticalities, then all of these subcomponents must 

agree on the criticalities of the flows they process. This condition is necessary because while most 

operating systems guarantee isolation between software processes, they do not guarantee the isolation 

of subcomponents within a software process. 

Given strong flow isolation within the software architecture confirmed, the model developer should 

next model the security controls required to protect each flow given that flow’s CIA impacts.   These 

activities complete Step 2 (Select the Controls) of the RMF process. 

An objective at this milestone is to minimize the number of components that process highly critical 

information types by isolating, as much as practical, the information flows involving those types to a few 

components. By doing so, the model developer minimizes the number of required security controls and 

reduces the cost of implementation, testing, and assessment.  

5.5.10 PDR Trade Studies 

Trade studies and system producibility assessments should be under way.  Software trade studies 

addressing commercial-off-the-shelf, reuse, and other software-related issues are completed. [45] 

5.6 Critical Design Review 
The Critical Design Review (CDR) provides the acquisition community with evidence that the system, down 

to the lowest system element level, has a reasonable expectation of satisfying the requirements of the 

system performance specification. The CDR establishes the initial product baseline for the system and its 

constituent system elements. It also establishes requirements and system interfaces for enabling system 

elements such as support equipment, training system, maintenance, and data systems. DAG criteria that 

are relevant to AADL modeling and analysis include (but are not limited to) [45]: 

• Detailed design (hardware and software), including interface descriptions are complete and 

satisfy all requirements in the system functional baseline. 

• Requirements tracing among functional, allocated, and initial product baselines is complete and 

consistent. 

• Key product characteristics having the most impact on system performance, assembly, cost, 

reliability, and sustainment or Environment, Safety, and Occupational Health (ESOH) have been 

identified to support production decisions. 

• Failure Mode, Effects, and Criticality Analysis (FMECA) is complete. 

• Estimate of system reliability and maintainability based on engineering analyses, initial test results 

or other sources of demonstrated reliability and maintainability. 

• Software functionality in the approved initial product baseline is consistent with the updated 

software metrics and resource-loaded schedule. 
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• Software and interface documents are sufficiently complete to support the review. 

• Verification (Developmental Test and Evaluation (DT&E)) assessment to date is consistent with 

the product baseline and indicates the potential for test and evaluation success. 

• All risk assessments and risk mitigation plans have been updated, documented, formally 

addressed, and implemented. 

5.6.1 CDR General Guidelines 

The CDR model fully captures the design architecture of the system.  Any more elaborate detail is captured 

in models for individual components using modeling languages suitable for each component’s application 

domain, e.g., Modelica, UML, VHDL.  In keeping with the RTCA DO-331 distinction between “specification 

model” and “design model,” the AADL models of component interfaces and key performance parameters 

are specification models, while the various models for component implementation details are the design 

models. 

Model content for all previously performed analyses should be reviewed and updated to the most precise 

and certain information available for CDR.  The analyses should be re-run. 

5.6.2 CDR Resource-Loaded Schedule Analysis 

This analysis determines if a specific set of threads and connections bound to specific processors and 

buses that use specific scheduling protocols satisfy a declared set of latency and throughput properties.  

Resource-loaded schedule analysis can provide component utilizations, upper and lower bounds on 

latencies and throughputs at points along event and data flows, and bounds on queue sizes and waiting 

times.   This analysis can provide sensitivity analysis for properties in the model such as 

Compute_Execution_Time. 

There are two general methods widely-used to perform this analysis, Monte-Carlo timing simulations and 

schedulability analysis. 

Monte-Carlo simulation analysis uses an executable representation of the model to simulate multiple 

possible sequences of execution, keeping track of virtual time.  The number and sequence of scenarios 

that are simulated are determined by parameters of the tool.  Most such tools come with libraries that 

simulate common scheduling protocols or kinds of components.  Most such tools allow additional 

protocols or components to be created using a scripting or conventional programming language. 

Schedulability analysis uses mathematical methods to determine analytic upper and lower bounds on all 

possible behaviors admitted by the model.  Different schedulability analysis algorithms are used for 

different scheduling protocols.  Schedulability analysis tools can produce sensitivity analysis results. 

The modeling and analysis effort required is typically less for schedulability than simulation because fewer 

details need to be modeled.  Solution times may be faster due to the avoidance of large numbers of 

simulation runs.  Schedulability analysis produces upper and lower bounds for all possible behaviors of 

the model, whereas simulation (like testing) only provides results for the scenarios that were executed.  

Simulation is more flexible, as it can analyze any protocol that can be written in software, while 

schedulability analysis is limited to algorithms that have been developed for specific kinds of scheduling 
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protocols.   Schedulability analysis provides analytic bounds that may be pessimistic, and tightness of 

bounds should be assessed. 

Analysis requires that threads and connections and their bindings to processors and buses be declared, 

together with a number of properties that declare thread and connection dispatch protocols and 

processor and bus scheduling disciplines.  Shared data components and the protocols used by threads to 

access them must be declared.  Bindings may be depicted in a layered architecture, and properties of 

virtual processors and virtual buses may be needed.   

Analysis tools are developed for particular combinations of thread and connection protocols and 

scheduling algorithms.  The above data will be common to all, but individual tools may allow or require 

additional data.  ACVIP planners and performers should consider the available tools when making 

decisions about performing schedulability analysis. 

Example: Hazard analysis of a model has determined that certain situation awareness capabilities 

are safety-critical.  They have a Design Assurance Level (DAL) sufficient for airworthiness 

authorities to require analytic verification of timing properties for all software and hardware that 

implements or affects those capabilities.  The derived PDR model provides these capabilities using 

software and hardware components that are isolated (partitioned) from other components.  The 

derived CDR model uses only periodic threads that are hosted on processors that comply with the 

ARINC 653 standard and binds connections to a switched Ethernet that complies with the ARINC 

664 standard.  Schedulability analysis is performed using an ARINC 653 schedulability analysis 

(static schedule verification) tool obtained from the selected RTOS vendor and an ARINC 664 

schedulability analysis (real-time network calculus) tool obtained from the selected network 

vendor, applied within a compositional schedulability analysis framework2 to analytically verify 

end to end latency requirements. 

5.6.3 CDR Risk Management Framework Analysis 

Analyses can be performed to verify that security control placement is adequate, controls are non-bypass-

able, and controls are tamper-resistant.  These analyses do not verify the controls themselves are correctly 

implemented, they verify the controls exist and are properly deployed in the architecture of the system. 

Model analysis at this stage yields confidence that the system architecture places required security 

controls properly to protect the flows.    

The model developer should annotate the model at the locations where system components will enforce 

the required security controls. Model analysis should then confirm that every component that manages a 

flow also protects that flow with the required security controls.  

A component’s implementation yields several realizations of that component (e.g., as a software process, 

as an operating system image, as a software partition, etc.), and model analysis should examine all 

 
2 A compositional analysis framework allows different analysis tools suited for different subsystems and equipment 
to be integrated in a way that provides end-to-end system timing analysis. 
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realizations for enforced controls. Model analysis should determine whether or not it is possible to bypass 

or tamper with a control by bypassing or tampering with one of these realizations.  

6. Assure System Conforms to Models 
A presumption throughout early development is that the models specify the to-be-built system with 

sufficient precision and certainty to significantly reduce rework cost and program risk.  ACVIP plans should 

address how this assurance is provided to the degree necessary to achieve the cost and schedule 

reduction goals.  Models are abstract approximations of the actual system, and plans should address how 

calibration is performed to assess the degree of conformance between model and as-built system, to an 

acceptable degree of assurance. 

Where modeling and analysis is used to provide evidence for certification authorities, a much higher level 

of assurance is needed to assure that the as-built system conforms to the model-based evidence than is 

needed for project cost and risk reduction alone as discussed in Support Certification Approvals and 

Readiness Reviews. 

6.1 Use Models as Specifications 
Models are key elements of the requirements and specifications that products must satisfy.  The ACVIP 

Management Plan should include activities to assure that the final as-built components and system 

comply with the specification models used during early-phase virtual integration and analysis.  There 

should be early-phase tasks to assure that other early-phase work products comply with their model-

based specifications.  Models should be analyzed for complexity, implementability, etc., to assure that 

planned processes and technologies are able to dependably produce products that comply with those 

models. 

Validation determines if a requirements model satisfies the needs of the users.  Analysis of requirements 

models performs model validation rather than model verification because this detects inconsistent, 

incomplete, or unsatisfiable requirements.    These are defects in the model-based specifications.   

Verification determines if a system complies with its specification model.  If a system does not conform 

to a valid model, then those defects are in the system rather than the model.  ACVIP analyses focus on 

detecting defects in the models.  At Certification and Readiness reviews and Physical Configuration Audit, 

evidence that the as-built system complies with its specification model must be provided. 

During early development phases, this is forward-looking and requires management controls during 

system design, implementation, and integration.  Assurance is also required that the final as-built system 

conforms to a final delivered model to a degree sufficient for the purpose.  There are at least two scenarios 

in which this is required. 

• The final delivered models must accurately describe the as-built system for the purpose of 

streamlining subsequent upgrade projects.  Where the Program ACVIP Plan calls for delivery of 

models to support future upgrades, the ACVIP Management Plan should explain how this will be 

accomplished during the Physical Configuration Audit (PCA). 
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• Where models and analyses are used to provide supporting evidence for certification and 

approval reviews, the ACVIP Management Plan should explain how the necessary degree of 

conformance between the system and the models and analyses is to be assured at those reviews. 

6.2 Generate Implementation Artifacts from Models 
Assurance that an as-built system conforms to its model can be increased by automatically generating 

detailed design and implementation artifacts from the model.  Assets that are generated from AADL 

architecture models are glue code and configuration files rather than code for software application 

algorithms or hardware circuit designs.  The level of assurance can be increased by assuring the generation 

tools and/or by independently verifying the generated assets using a combination of review, analysis and 

testing. 

Example: A mission system integrator is hosting multiple FACE UoPs on an ARINC 653 compute module.  

Transport Services (TS) functions are implemented using a combination of a configurable software 

layer in each partition that contains a UoP and the RTOS inter-partition messaging services.  The 

software layer in each partition is configured by modifying some of its code, and a tool is used to 

generate this code from the AADL model.  A second tool is used to generate an AADL schedule from 

the model.   A third tool is used to generate the ARINC 653 RTOS configuration file used to integrate 

the hosted UoPs and their partitions.  A fourth tool is used to automate the make/build process to 

create a bootable load image. 

Certification credit may be obtained for implementation artifacts that are automatically generated from 

the analytically-verified model if the generation tool has been sufficiently assured or if an independent 

verification tool or method is applied to the generated result. 

6.3 Perform Model-Based Testing 
Assurance that an as-built system conforms to its model can be increased by using model-based testing 

methods and tools [25].  As with analysis, model-based testing should address requirements, and plans 

should consider cost versus benefit. 

It may be useful to elaborate the system model to create a System Integration Lab (SIL) model that adds 

information about verification and validation methods to be applied.   The SIL model may add components 

such as emulators and test equipment for environment objects.  The SIL model may, with careful 

consideration, substitute special test components for selected system components that have greater 

controllability or observability.   

A SIL model may add model-based verification methods such as automated test generation or automated 

checks that observed behaviors comply with the model.   

Example: A System Integration Lab (SIL) will be used to verify a sample mission system product 

before it is integrated into an air vehicle.  The SIL has a configurable AADL Verification Architecture 

Model of the configurable lab infrastructure and its suite of simulation, test, user interface, and 

other lab equipment.  The AADL Integration Architecture Model of the sample product is virtually 

integrated into the AADL Verification Architecture Model of the SIL, and variation point selections 
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are made for the equipment and configuration needed for each planned verification task.  The 

Verification Architecture Model includes components to simulate external equipment, such as a 

Global Positioning System (GPS) emulator.   The Verification Architecture Model substitutes for the 

system network a SIL network that is configurable and instrumented for high-speed collection of 

message data.  The resulting model is used to automatically generate configuration data for some 

lab equipment (such as configurable network crossbar switches) and used for automated model-

based testing to verify the sample system conforms to the SIL’s AADL Verification Architecture 

Model. 

  



 
89 

  

Copyright, 2021, Adventium Labs. 

Appendix A: ACVIP Management Plan Checklist 
 

 ACVIP Management Plan is consistent with the System Engineering Management Plan  

 ACVIP risk management goals and plans are consistent with the Risk Management Plan 

 ACVIP certification evidence goals and plans are consistent with the relevant certification plans 

 ACVIP Management Plan identifies the ACVIP goals and requirements for the project 

 Categories of defects and rework targeted for early detection and reduction are identified 

 Models to be developed or reused are identified 

 Models to be delivered from one organization to another are identified 

 The content and structure of delivered models is consistent with model access control plans 

 The purpose, model, and analyses to be performed at each review are identified 

 Plan identifies potential future upgrades to be accommodated by the model 

 Cost versus benefit assessment was done and the rationale is documented 

 Model-based descriptions including needed libraries and patterns will be provided to model suppliers 

 Dependencies between and delivery schedules for models are consistent with project plans 

 Change and configuration management plan is in place and adequate for model exchanges 

 The technical information needed to develop each model will be available when needed 

 Plan identifies which models are the sources-of-truth for key pieces of information 

 Procedures are identified to take corrective and preventative actions after model development 

 Procedures are identified to take corrective and preventative actions after virtual integrations 

 Plan establishes traceability from higher-level requirements to SRR model 

 SRR model establishes patterns and conventions to elaborate traceability through subsequent reviews 

 Plan establishes traceability from CDR AADL model to component non-AADL models and specifications 

 Plan establishes traceability from CDR models through certification and acceptance reviews 

 Plan provides sufficient time and resources to perform virtual integration and analysis activities 

 Plan allows for collaboration with model suppliers during virtual integrations to resolve problems 

 Models are included as part of the specifications for component design and implementation 

 Models are included as part of the specifications for how components are to be integrated 

 Plan provides adequate assurance the as-built system conforms to its specification models 
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List of Acronyms 
3D – Three Dimension 

ADL – Architecture Description Language 

AADL – Architecture Analysis and Design Language 

ACVIP – Architecture Centric Virtual Integration Process 

AMACC -- Army Military Airworthiness Certification Criteria 

AQP – Airworthiness Qualification Plan 

AQS – Airworthiness Qualification Specification 

AvMC – Aviation & Missile Center 

API – Application Programming Interface 

ARINC – Aeronautical Radio, Incorporated 

ARP – Aerospace Recommended Practice 

ASoT – Authoritative Source of Truth 

BPS – Bits Per Second 

CAD – Computer Aided Design 

CAI – Critical Application Items 

CCA – Common Cause Analysis 

CD – Cross Domain 

CDD – Capability Development Document 

CDR – Critical Design Review 

CDRL – Contract Data Requirements List 

CDS – Cross Domain Solution 

CIA – Confidentiality, Integrity, Availability 

CNSS -- Committee on National Security Systems 

CONOPS – Concept of Operations 

CSC – Computer Software Component 

CSCI – Computer Software Configuration Item 

CSI – Critical Safety Item 

CSU – Computer Software Unit 

DAL – Design Assurance Level 

DD – Dependency Diagram 

DEVCOM – Development Command 

DID – Data Item Description 

DoD – Department of Defense 

DoDAF – Department of Defense Architecture Framework 

DoDI – Department of Defense Instruction 

DT&E – Developmental Test and Evaluation 

EMD – Engineering & Manufacturing Development 

EMV2 – Error Model Version 2 
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ESOH – Environment, Safety, and Occupational Health 

ETA – Event Tree Analysis 

FAA – Federal Aviation Administration 

FACE™ – Future Airborne Capability Environment 

FHA – Functional Hazard Assessment 

FMEA – Failure Modes and Effects Analysis 

FMECA – Failure Modes, Effects, and Criticality Analysis 

FTA – Fault Tree Analysis 

GFI – Government Furnished Information 

GPR – Government Purpose Rights 

GPS – Global Positioning System 

I/O – Input/Output 

ICD – Interface Control Document 

IDE – Integrated Development Environment 

IT – Information Technology 

JMR – Joint Multi-Role 

LCC – Life Cycle Cost 

M&S – Modeling and Simulation 

MA – Markov Analysis 

MIL-HDBK – Military Handbook 

MIL-STD – Military Standard 

MILS – Multiple Independent Levels of Security 

MIPS – Millions of Instructions Per Second 

MDA – Model Driven Architecture 

MLS – Multiple Levels of Security 

MODAF – Ministry Of Defense Architecture Framework 

MSAD – Mission System Architecture Demonstrations 

ms – Milliseconds 

MSI – Mission System Integrator 

NASA – National Aeronautics and Space Administration 

NIST – National Institute of Standards and Technology 

NSS – National Security Systems 

OMG – Object Management Group 

OSA – Open Systems Architecture 

OSATE – Open Source AADL Tool Environment 

OSLC – Open Services Lifecycle Collaboration 

PCA – Physical Configuration Audit 

PHAC – Plan for Hardware Aspects of Certification 

PDR – Preliminary Design Review 

PSAC – Plan for Software Aspects of Certification 

PSSA – Preliminary System Safety Assessment 

RAM – Reliability, Availability, Maintainability 
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RBD – Reliability Block Diagram 

RDAL – Requirements Definition and Analysis Language 

RDECOM – Research, Development and Engineering Command 

ReqIF – Requirements Interchange Format 

RMF – Risk Management Framework 

RTCA – Radio Technical Commission for Aeronautics 

RTOS – Real Time Operating System 

S&T – Science and Technology 

SA – Situation Awareness 

SATCOM – Satellite Communications 

SEI – Software Engineering Institute 

SEP – Systems Engineering Plan 

SEMP – Systems Engineering Management Plan 

SINCGARS - Single Channel Ground and Airborne Radio System  

SIL – System Integration Lab 

SP – Special Publication 

SRD – Systems Readiness Directorate 

SRR – System Requirements Review 

SSA – System Safety Assessment 

STPA – System-Theoretic Process Analysis 

SysML – System Modeling Language 

TD – Technology Demonstrator 

TDP – Technical Data Package 

TOC – Total Ownership Cost 

TRR – Test Readiness Review 

TSS – Transport Services Segment 

UAV – Unmanned Air Vehicle 

UCDSMO – Unified Cross Domain Services Management Office 

UDDL – Universal Domain Description Language 

UML – Unified Modeling Language 

UPDM – Unified Profile for DoDAF/MODAF 

UoP – Unit of Portability 

USM – UoP Supplied Model 

VHDL – VHSIC Hardware Description Language 

VHSIC – Very High Speed Integrated Circuit 
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