
ConCEPT: Constraint-Checking Editor for Procedure Editing and Tracking
Mark Boddy, Martin Michalowski, Hazel Shackleton

Adventium Labs, Minneapolis MN USA
{firstname.lastname@adventiumlabs.com}

Russell Bonasso, Scott Bell
TRACLabs, Houston TX USA

{bonasso@traclabs.com, scott@traclabs.com}

Abstract

Constructing, maintaining, modifying, and adapting opera-
tional procedures for manned space operations is a complex
task. The procedure author is required to keep track of state
constraints such as the location of personnel, equipment, or
tools, and of resources such as oxygen, fuel, or power. They
must also keep in mind a set of constraints imposing addi-
tional restrictions on these procedures. For operations on the
International Space Station (ISS), these constraints may be
of several different types, including such things as warnings
that must be present for a given type of operation, previous
actions that must have been taken, tracking the location of
personnel, tools, and equipment, or synchronizing operations
by different astronauts.
As part of an ongoing research project funded by NASA,
Adventium Labs and TRACLabs have designed and imple-
mented an initial version of the Constraint Checking Edi-
tor for Procedure Tracking (ConCEPT) system, a constraint-
checking system for procedures represented in the Proce-
dure Representation Language (PRL). ConCEPT has been
integrated into TRACLabs’ Procedure Integrated Develop-
ment Environment (PrIDE), so that procedures in PRL can be
checked against constraints and modified during the process
of procedure authoring. The design of ConCEPT, including
the types of constraints considered and the integration into
the PrIDE user interface, has been validated in discussions
with NASA flight controllers.

1 Introduction
NASA’s manned space operations, for example those involv-
ing the ISS, rely heavily on an extensive database of pro-
cedures, which specify what steps are to be taken, in what
order, and what set of confirmation checks must be done as
the operation proceeds. Here is a simple procedure specify-
ing how a single crew member moves from the open airlock
to outside of the ISS:

Procedure (tether)
1. Thermal cover - open
2. Egress AIRLOCK
3. Attach tether to left D-ring extender
4. Verify tether config

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

More complex procedures may be hierarchical, in the sense
that one step of a given procedure may refer to another
procedure (or, in some cases, to a step or steps contained
in another procedure). Procedures for more complex oper-
ations may require tracking resources such as oxygen, fuel,
or tools; choosing from alternative sub-procedures; synchro-
nized or overlapping action by multiple agents; and precon-
ditions required for the procedure to be executed. Figure 1
shows an example of a more complex, hierarchical proce-
dure drawn from the same Extra-Vehicular Activity (EVA)
domain as the simple example above.

 3

Deriving Planning Information

Knowledge engineering is key to constructing a planning
model as well as to extracting the critical parts of a
domain ontology. The PHALCON tasks were derived
from systems operations data files (SODFs), word files
that were part of the repository of flight controller
procedures. For the EVA tasks, we needed to go over the
written description of the full six-hour scenario because
the EVA flight controllers develop each EVA activity
essentially from scratch. While the activities of
connecting and disconnecting equipment to and from the
station are fairly routine (though new equipment requires
astronauts to test the procedures in the neutral buoyancy
facility at JSC), each EVA is unique both in the number
and types of tasks and in the starting locations of the
equipment and tools used in the tasks.
 But these written documents have little or no planning
information associated with them, such as activity
duration, purpose, preconditions or constraints. To derive
this planning information, we started with a given EVA or
PHALCON procedure, discussed each step with the
cognizant flight controller, and then rewrote the procedure
to include the information required for planning. We then
used this information to construct a planning model for
the tasks involved. This procedure analysis and
distillation resulted in a structured view of the tasks in our
scenario.
 A hierarchical task net of the EVA tasks with a partial
decomposition is shown in Figure 1. Consider the egress
airlock task. When the two astronauts exit the airlock,
first one goes out and attaches to a safety tether. Then the
second astronaut hands out certain equipment (in this case
the bag to hold the CETA-light to be retrieved) to the first
before exiting himself. The green text in Figure 1 shows
the procedure one would find in any number of previous
EVA procedures for the single person egress. Simply, it
says to open the thermal cover, go out and tether up. The
key choice here is which safety tether to use. The PRL
from the procedure alone would look like the following
(PRL is in XML so we use a pseudo-PRL for illustration):

Step 1
 Manual Instruction: Thermal cover to open
 Manual Instruction: Egress airlock
 Manual Instruction: Hook Safety-tether to D-ring on suit
 Verify Instruction: Verify Safety-tether configuration

 Our derived planning information associated with that
procedure shows that the point of the procedure is to get
an inside human agent located outside the airlock, the
duration is typically 4 minutes and it requires that there be
an unoccupied safety tether outside the airlock. A
bookkeeping side effect is that the thermal cover will be
open when this procedure completes.

Derived Sub-procedures

From our analysis we distilled seven intermediate sub-
procedures and ten leaf-level PHALCON procedures, and
thirteen intermediate and 48 leaf-level EVA sub-
procedures. An example of a partial breakout of sub-
procedures for PHALCONs is shown in Figure 2. When
viewed from a planning perspective, the DDCU shutdown
consists of a group of tasks that can be done many hours

prior to the EVA crew arriving at the DDCU site, and
another group that is executed when the EVA crew is 30
minutes away from arriving at the site. The first group
involves a mix of intermediate and leaf sub-procedures
(shown in light blue) that are executed in conjunction
with other flight disciplines that will be affected by the
shutdown. The actual number of these sub-procedures
used in a plan will depend on the state of the hardware of
the sub-disciplines at the time of the DDCU R&R EVA.
The second set of actions is leaf-level sub-procedures that
include powering down and electrically isolating the
DDCU.
 In several procedures, for example, the S-BAND-swap,

Figure 2 A breakdown of the PHALCON sub-procedures for a

DDCU Shutdown. Light blue text indicate leaf level (non-

decomposable) plan nodes.

Figure 3 A breakout of EVA sub-procedures for removing a
CETA light. Figure 1: EVA procedure with hierarchical structure.

Further complicating the picture is the presence of addi-
tional constraints on the procedure or on the current state
as the procedure is executed. Examples of these procedural
constraints include never operating outside the ISS without
being tethered, or keeping an external light heated when it is
turned off in order to extend its service lifetime.

Over the past few years, several projects have aimed to
provide NASA flight controllers with operations planning
and execution aids, most notably the Automation for Oper-
ations initiative (Frank 2009). One result of this work has
been the development of the Procedure Representation Lan-

Figure 2: The Procedure Integrated Development Environment (PrIDE), the PrIDE Planning Wizard (PPW) and the PrIDE
Ontology Editor (PRONTOE), at top, bottom left and right, respectively

guage (PRL), an XML-based language developed by TRA-
CLabs that captures the form of traditional procedures and
automatically translates them into code that can be executed
by NASA-developed autonomous executives. PRL provides
for access to spacecraft and habitat telemetry, includes con-
structs for human-centered displays, allows for the full range
of human interaction, and is intended to support automatic
methods of verification and validation. PRL is supported
by a graphical authoring system, known as PrIDE, that en-
ables non-computer programmers to write procedures (Ko-
rtenkamp, Bonasso, and Schreckenghost 2007).

PrIDE is intended to replace processes in which procedure
construction, maintenance, adaptation, and monitoring dur-
ing execution have been done without the aid of tools more

sophisticated than a word processor. For example, many pro-
cedures for ISS operations are authored in Microsoft Word,
in some cases resulting in documents that are dozens of
pages long, with extensive cross-referencing both within and
among documents.

Over the past few years, Adventium Labs has teamed with
TRACLabs on a series of development projects that have
added new capabilities and support to PrIDE for creating
and editing PRL procedures. One of these projects resulted
in the implementation of the PrIDE Planning Wizard (PPW),
in which the PRL schema were extended to provide ex-
plicit support for Hierarchical Task Network (HTN) plan-
ning, which can then be used to manage hierarchical proce-
dures structures such as that shown in Figure 1 (Bonasso,

Figure 3: ConCEPT system architecture.

Boddy, and Kortenkamp 2009; Boddy and Bonasso 2010;
Bonasso and Boddy 2010). PPW supports users who are not
experts at developing and maintaining planning models by
providing a “base ontology” from which domain objects can
be specialized.

A second joint project focused on the domain model.
Planning in any moderately complex domain depends cru-
cially on being able to maintain a model of the environ-
ment and the current state. The PrIDE Ontology Editor
(PRONTOE) provides explicit support for non-expert users
(that is, non-expert in the maintenance of planning domain
models) to maintain and extend an ontology of object types,
along with providing interfaces to external systems such as
NASA’s External Configuration Analysis and Tracking Tool
(ExCATT), making it easier to update current state informa-
tion (Bonasso et al. 2013; Bell et al. 2013). Figure 2 shows
the main display panels for PrIDE, PPW, and PRONTOE.

The work described in this paper is a logical extension of
our previous collaborations. The Constraint Checking Edi-
tor for Procedure Tracking (ConCEPT) provides automated
constraint checking related to state, resources, and proce-
dural constraints for flight controllers creating or editing
procedures. Integrated with PrIDE, ConCEPT can be used
to check constraints on procedures as they are created or
edited, thus reducing errors, rework, and hand debugging
of procedures as they are being constructed. In the rest of
this paper, we describe the current ConCEPT implementa-
tion (Section 2), followed by a detailed description of the
kinds of constraints currently supported by ConCEPT (Sec-
tion 3). We then briefly describe and motivate the technical
choices we have made in implementing ConCEPT, and dis-
cuss plans for further development over the remainder of the
current project and beyond (Section 5).

2 ConCEPT Implementation and Integration
Figure 3 shows how ConCEPT is integrated functionally
into PrIDE. A human user creates or edits procedures using
PrIDE, occasionally invoking ConCEPT to check for viola-
tions of several different classes of constraints on those pro-
cedures. The results of those checks are returned to PrIDE
to be displayed to the user, who may choose to fix, delete, or
simply ignore the reported constraint violations. As shown
in the figure, ConCEPT builds on our previous work, mak-
ing use of the domain model developed and maintained us-
ing PRONTOE. Also shown is the path by which some con-
straints are imported into ConCEPT, in this case from a wiki
containing information on Notes, Cautions, Warnings, and
Inhibits that must be present for EVA operations on the ISS.
This import process and the accompanying “Constraint Ed-
itor” are the only parts of the architecture that are not fully
implemented in the current version of the system.

ConCEPT has been implemented and integrated into
PrIDE. Figure 4 shows the running system. Through the rest
of the paper, all of the screenshots depicting ConCEPT func-
tions are taken from the running system, displayed either as
part of the display in Figure 4, or as popups on it.

3 Constraint Examples
Based on our discussions with EVA personnel, our initial
implementation of ConCEPT includes four general classes
of constraints, specialized to fit more closely with EVA op-
erations and procedures.

Notes, Cautions, and Warnings constraints enforce the
presence of applicable Notes, Cautions, or Warnings in
the appropriate place in a procedure. The more generic

Figure 4: PrIDE display augmented with ConCEPT, showing a missing Pinch Warning (highlighted in bottom left pane) for
Egress step highlighted in the upper right pane

form of this constraint is a check for specified text to be
displayed, along with a description where to display it.

Location constraints refer to the projected locations of
both crew and objects such as tools. The more generic
form of this constraint is state progression: define what
actions change which aspects of state, and then track those
changes over time.

Operational constraints refer to collections of procedure
steps or instructions, for example ensuring that if some
actions are present in a given procedure or set of proce-
dures, so are a specified set of others.

Synchronization constraints enforce required synchro-
nization across procedures, for example for Give Go /
On Go operations, or for operations that require simul-
taneous actions by multiple agents.

These constraint types are described in more detail, below.

3.1 Notes, Cautions, and Warnings
These constraints enforce the presence of Notes, Cautions,
and Warnings for relevant procedure instructions. For ex-
ample, Figure 4 shows a missing “Pinch Warning” for an
Egress step in the procedure shown. The relevant constraint,
shown in Figure 5, has been imported from the wiki entry
shown in Figure 6. When the constraint violation shown in
the lower pane is selected, ConCEPT generates a proposed
“quick fix,” which in this case is simply to add the required
Warning, resulting in the procedure displayed in Figure 7.

Figure 5: Relevant “Pinch Warning” constraint

3.2 Location
Location constraints track the projected locations of both
crew and objects such as tools. For example, in Figure 8,
the instruction outlined in blue specifies that certain tools
should be stowed in crewlock bag #2. But in a previous step
also shown, that bag was left at the airlock immediately after
Egress, after which the crew member translated to a different
location.

As shown in Figure 9, a popup in the PrIDE user in-

Figure 6: Wiki source for Pinch Warning

Figure 7: Fix for Pinch Warning has been applied

terface warns that crewlock bag #2 will not be at the re-
quired location for the highlighted instruction. The popup
also specifies the last location known for the item. For Loca-
tion constraints, no “quick fix” is suggested, because it is not
clear what that fix should be. In the example given, should
the author add a step to retrieve the bag before translating
away? Or should some crew member go get the bag later?
Or should the tools be stowed elsewhere?

The relevant constraint template in this case is:

at(instr,procedure.agent.location = instr
.target.location);

This constraint says that when the specified instruction
starts, the agent and any object (target) mentioned in the
instruction (the bag, in this case) must be at the same lo-
cation. If the instruction or the containing step specifies a

Figure 8: Crewlock bag #2 was left stowed at the airlock.

location, then we could add an additional constraint, which
is that both the crew and the bag are at the specified location:

at(instr, procedure.agent.location =
instr.location);

at(instr, instr.target.location = instr.
location);

This would have the added benefit of allowing us to deter-
mine independently whether the agent or the bag is at the
wrong location.

Checking and enforcing location constraints requires the
ability to track location through the execution of the proce-
dure. Procedure steps are ordered within a single procedure
and we can specify the instruction types which change the
location of an agent or object, so this is straightforward. It

Figure 9: ConCEPT provides the most recent known loca-
tion for the bag.

Figure 10: EV1 is at S4, the “stow” instruction specifies S5.

becomes more complicated when the context includes more
than one procedure, as in the example in Section 3.4.

This inference is a simple form of progression, as in AI
planning, with some added axioms to make sure that ob-
jects attached to the crew member, and anything contained
in those objects, will change location as well. As discussed
in Section 5, a more general planning capability may even-
tually be needed, but has not yet been included in ConCEPT.
Location constraints can be known to be violated—the ob-
ject is in the wrong place, according to the procedure(s) as
written—known to be satisfied, or unknown, for example if
there are multiple procedures and insufficient coordinating
instructions to establish an ordering on the relevant proce-
dure steps.

The situation shown in Figure 10 illustrates one of the
difficulties in modeling the ISS as a planning domain: “loca-
tion” on the ISS is a complicated concept. In this example,
the crew member moves to the specified location S4, then
stows a piece of equipment on a hand-rail at S5. ConCEPT
generates an error message:

At start of instruction “temp stow spare SSU 9 on S5
HR 2112” the agent should be at S5. Their position is
S4 and was last seen at “translate to SS4 SSU ORU 3
worksite.”

What the system does not recognize is that being positioned
at S4 is the correct location for working on that equipment.
For more details on the complexities involved in modeling
and reasoning about ISS locations, see (Bell et al. 2013).

3.3 Operational Constraints
Operational constraints ensure that if some actions are
present in a given procedure or set of procedures, so are a
specified set of others. For example, before any work on or

Figure 11: Applicable constraint for missing inhibits

Figure 12: Applied Fix for Missing Inhibits

near a Solar Array Alpha Rotary Joint (SARJ), the SARJ
itself must be locked down. From the EVA wiki:

I f EV crew working w i t h i n 2 f e e t ,
o u t b o a r d o f S t a r b o a r d SARJ , o r

r e q u i r e d p e r l o a d s FR (i n c l u d e s
o u t b o a r d f a c e s o f o u t b o a r d ELCs /
ESPs)

X DLA 1 (2) −− LOCKED
X DLA 2 (1) −− ENGAGED
A l l motor s e t p o i n t s s e t t o z e r o
A l l moto rs d e s e l e c t e d

The four items listed are special checks, known as inhibits,
that must occur in a block at the top of the appropriate pro-
cedure step. Figure 11 shows the applicable constraint. The
quick fix in this case is to add an “inhibit block” at the be-
ginning of the step, with the result shown in Figure 12.

In Figure 13, we see another example of an operational
constraint. In this case, a bolt (“BAX bolt #2”) is being in-
stalled. For this installation, there must also be explicit in-
structions for recording torque and turns for that installation.
Slightly more formally:

For any instruction, i, that involves installing an object
of type BOLT, there must be two additional instructions
i1 and i2 in the same step as i and after i, to record
torque and turns information for the installation of the
bolt.

The procedure in Figure 13 satisfies this constraint, as the in-
stallation step does have the required reporting instructions.

Figure 13: BAX bolt installation with required recording in-
structions

3.4 Synchronization
EVA operations involve several different kinds of synchro-
nization among the EVA crew, between EVA and IV (crew
within the ISS participating in the operation in some way),
or between crew and flight controllers on the ground. To
support this synchronization, PRL and PrIDE have recently
been extended to support “coordinated instructions” across
multiple procedures. ConCEPT includes a class of synchro-
nization constraints, which can be used to enforce the pres-
ence of coordinated instructions, including the presence of
the associated instructions in other procedures.

Figure 14 shows the modified PrIDE interface with two
procedures side-by-side. The highlighted instructions in
each procedure are coordinated, such that EV2 is instructed
to wait for EV1 to provide a “go” to proceed with further
operations. It is a constraint violation for either “give go”
or “on go” instructions to appear without an explicit pointer
to the complementary instruction in some other procedure.
Coordinated instructions can be used to infer ordering on
steps and instructions across procedures, thus increasing the
power of the system to reason about state changes such as
object location, in a multi-agent environment.

4 Technical Details
To this point in the paper, we have presented a lot of ex-
amples and screenshots, but little in the way of description
of how the underlying inference is accomplished. That em-
phasis matches how the project has been conducted so far.
ConCEPT is strongly driven by user interaction and work-
flow, as well as by the information available through inte-
gration to NASA information systems or through the other
PrIDE extensions discussed above.

Initially, our design for ConCEPT called for the integra-
tion of a fully functional Constraint Satisfaction Problem
(CSP) solver, as well as the use of the Action Notation Mod-
eling Language (ANML) for representing procedural infor-
mation, supporting a limited planning capability encoded in
the underlying CSP (Smith, Frank, and Cushing 2008). In

practice, neither of these things has been necessary. While
ConCEPT is solving a CSP, to date the constraints involved
have been simple enough, few enough, and sufficiently in-
dependent from one another that a general purpose solver
provides much more power than is needed, to the point of
not being worth the additional overhead.

Similarly, the inference being performed in tracking the
location of both personnel and objects such as tools will
quickly be recognized by anyone remotely familiar with AI
planning as an elementary form of state progression. The
same technique could be applied to track other forms of state
information, but so far that has not been of interest to poten-
tial users. Nor does ConCEPT yet exploit the much richer
planning information available through the PRL extensions
made as part of the PPW, because there has not yet been a
strong call from users to implement those extensions, despite
their interest in using them, in principle.

Our emphasis has been on getting a working prototype in
front of potential users as quickly as possible, so as to maxi-
mize the feedback obtained regarding what features and ca-
pabilities are or are not of interest. This strategy has proved
sound: our initial understanding of the form of constraints
that would be most useful was considerably revised over the
course of several meetings with EVA flight controllers. At
the most recent review, we were assured that what we had
implemented, and have presented in this paper, is what they
would like to use.

The inferential machinery underlying ConCEPT will al-
most certainly evolve in complexity and sophistication over
time. But our current approach means that those elaborations
will be done in the service of specific requirements.

5 Discussion and Future Work
This paper describes the state of the ConCEPT system at
roughly the mid-point of a 2-year development project. The
focus to date has been primarily on user requirements, in-
terface, and workflow, with implementation of inferential
machinery as required. ConCEPT has been demonstrated to
and reviewed by potential users, but is not sufficiently ro-
bust for a field test. The next step in development will be to
shadow the construction of an EVA procedure. In fact, this
procedure will be constructed in 3 different ways: NASA
personnel will use the existing process (i.e., in Microsoft
Word), with other personnel shadowing that process using
the currently-available version of PrIDE. In addition, mem-
bers of the ConCEPT team will also shadow the process,
using a newer version of PrIDE augmented with ConCEPT.
We expect this exercise to be a rich source of corrections and
further requirements, to be addressed over the remainder of
the second year of the project.

Looking out past the end of the current project, there are
many directions in which this work can be extended. Im-
provements in robustness and efficiency will be required
before the system is deployable. Given the data-intensive
nature of ConCEPT’s inference, integrating more closely
with NASA’s existing information systems will be crit-
ical to user acceptance, as will providing effective edi-
tors for ConCEPT’s internal knowledge base, tuned to user
workflows. We have extensive previous experience with

Figure 14: Coordinated instructions have been linked

these issues, as they have arisen with regard to PPW and
PRONTOE, as well.

One possible near-term extension would be to apply
ConCEPT to EVA procedure execution and on-the-fly pro-
cedure modification. Additional potential applications for
ConCEPT include flight disciplines beyond EVA, other
NASA applications, and other applications where PRL and
PrIDE are gaining interest and acceptance, such as the oil
and gas industry.

Longer term, there are some significant research questions
to be addressed. Use of the full power of the PPW planning
extensions will require more systematic treatment of time
and state. Temporal durations and metric state information
are likely to become important, as the breadth of applica-
tion grows. On the CSP side, presenting a single violated
constraint to the user as an explanation suffices for now, be-
cause interaction among those constraints is minimal. But as
the complexity, diversity and number of constraints grows,
implementing, or more likely adopting, a CSP engine that is
capable of identifying and presenting more complex incon-
sistencies will become increasingly important.
Acknowledgements: This material is based upon work supported
by NASA via the NASA Shared Services Center, Stennis Space
Center, MS under Contract No. NNX14CA10C. Any opinions,
findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of NASA Shared Services Center, Stennis Space Center, MS.

References
[Barreriro and Chachere 2010] Barreriro, J. J., and Chachere, J.

2010. Constraint and flight rule management for space mission

operations. In International Symposium on Artificial Intelligence,
Robotics, and Automation in Space.

[Bell et al. 2013] Bell, S.; Bonasso, R.; Boddy, M.; Kortenkamp,
D.; and Schreckenghost, D. 2013. Prontoe: A case study for devel-
oping ontologies for operations. In 5th International Conference
on Knowledge Engineering and Ontology Development.

[Boddy and Bonasso 2010] Boddy, M., and Bonasso, R. 2010.
Planning for human execution of procedures using anml. In ICAPS
2010 Scheduling and Planning Applications Workshop.

[Bonasso and Boddy 2010] Bonasso, P., and Boddy, M. 2010.
Eliciting planning information from subject matter experts. In
ICAPS 2010 Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).

[Bonasso et al. 2013] Bonasso, R. P.; Boddy, M.; Kortenkamp, D.;
and Bell, S. 2013. Ontological models to support space opera-
tions,. In Workshop on AI in Space at the 2013 International Joint
Conferences on Artificial Intelligence (IJCAI).

[Bonasso, Boddy, and Kortenkamp 2009] Bonasso, P.; Boddy, M.;
and Kortenkamp, D. 2009. Enhancing nasa’s procedure represen-
tation language to support planning operations. In Proceedings of
the International Workshop on Planning and Scheduling for Space
(IWPSS).

[Frank 2009] Frank, J. 2009. Automation for operations. http:
//ti.arc.nasa.gov/news/a4o-demo-for-hdu/.

[Kortenkamp, Bonasso, and Schreckenghost 2007] Kortenkamp,
D.; Bonasso, R.; and Schreckenghost, D. 2007. Developing and
executing goal-based, adjustably autonomous procedures. In AIAA
InfoTech@Aerospace Conference.

[Smith, Frank, and Cushing 2008] Smith, D.; Frank, J.; and Cush-
ing, W. 2008. The anml language. In International Conference on
Automated Planning and Scheduling.

http://ti.arc.nasa.gov/news/a4o-demo-for-hdu/
http://ti.arc.nasa.gov/news/a4o-demo-for-hdu/

	Introduction
	ConCEPT Implementation and Integration
	Constraint Examples
	Notes, Cautions, and Warnings
	Location
	Operational Constraints
	Synchronization

	Technical Details
	Discussion and Future Work

