
Copyright 2018 Adventium Labs 1

Integrated AADL Analysis
Tutorials (Ver. 0.1.0 Rev. 10-Sep-2018)

Distribution Statement A: Approved for public release; distribution unlimited. AMRDEC ADD – Eustis
Contract Number W911W6-17-D-0003 Delivery Order 3

This material is based upon work supported by the U.S. Army Research Development and Engi-
neering Command (RDECOM), Aviation Missile Research Development and Engineering Center
(AMRDEC), Aviation Development Directorate (ADD) under contract no. W911W6-17-D-0003.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the U.S. Army RDECOM or AM-
RDEC.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 2

Integrated AADL Analysis

Copyright 2018 Adventium Labs 3

Table of Contents
Overview ... 4
Additional FACE and AADL Resources ... 4
Setup ... 4
Lesson 1. The BALSA Model ... 5

Prerequisites ... 5
Summary ... 5
Navigating in OSATE .. 5
What is BALSA? .. 6
Installing the FACE Data Model to AADL Translator ... 6
Using the FACE Data Model to AADL Translator .. 6
Exploring the BALSA AADL model .. 7
Using OSATE tools to Create and View Diagrams ... 8

Lesson 2. Modifying the BALSA AADL Model ... 9
Prerequisites ... 9
Summary ... 9
Introduction to Data Flows in AADL ... 9
Adding Threads to the AADL BALSA Model .. 10
Adding End to End Flows to the AADL BALSA Model .. 15
Adding Properties to an AADL Model .. 16
Performing Latency Analysis on the AADL BALSA Model .. 17
Optional: Packaging the Transporters into a single TSS Example ... 19

Lesson 3. Executing a BALSA-Derived Demonstration System ... 23
Prerequisites ... 23
Summary .. 23
Introduction to Basswood ... 23
Configuring Basswood Real-Time Attributes .. 24
Configuring the Real-Time Execution Environment ... 25
Generating Source Code and Running the Real-Time Application .. 25

Lesson 4. Utilization Analysis ... 28
Prerequisites ... 28
Summary .. 29
Adding Utilization Properties to the Basswood Model ... 29
Performing Utilization Analysis on the Basswood Model ... 31
Utilization Success of Basswood on RTEMS ... 32
Utilization Failure of Basswood on RTEMS .. 33
Demonstrate a Utilization Failure in AADL ... 33

Lesson 5. Report Generation ... 34
Prerequisites ... 34
Summary .. 34
Creating an Example Report Template .. 34
Generating a Formatted FASTAR Utilization Report ... 35
Optional: Automating Analysis and Report Generation using Ant .. 35

Lesson 6. Schedulability Analysis .. 37
Prerequisites ... 37
Summary .. 37
Adding Timing Properties to the AADL Basswood Model .. 37
Performing Schedulability Analysis on Basswood ... 39
Interpreting the Schedulability Analysis Report .. 40
Demonstrating a Schedulability Analysis Failure ... 41
Executing the Priority Inversion in RTEMS ... 43

Integrated AADL Analysis

Copyright 2018 Adventium Labs 4

Overview
This guide provides a set of tutorials touching on a variety of the Architecture Analysis and Design Language (AADL)
analyses. This guide is part of a training package that includes features of AADL and the Future Airborne Capability
Environment (FACE) Technical Standard. The examples in this training package are based on the Basic Avionics
Lightweight Source Archetype (BALSA) example provided by the FACE™ Consortium and reference an AADL mod-
el of BALSA included in the training package. This guide uses the Open Source AADL Tool Environment (OSATE)
as its development environment for AADL modeling.

For updates to this document and related information, see Tools, Training, and Reference Materials for the FACE
Technical Standard [https://www.adventiumlabs.com/camet/face]

Additional FACE and AADL Resources
• Additional FACE resources can be found at: FACE Documents [http://www.opengroup.org/face/information]

• Additional information about BALSA can be found at: BALSA Overview [https://publications.opengroup.org/d207]

• Additional information about OSATE can be found at: About OSATE [http://osate.org/about-osate.html]

• Additional information about Real-Time Executive for Multiprocessor Systems (RTEMS) can be found at: RTEMS
Documentation [https://docs.rtems.org/branches/master/]

• Additional resources for the combined use of AADL and the FACE(TM) Technical Standard can be found at: Tools,
Training, and Reference Materials for the FACE Technical Standard [https://adventiumlabs.com/CAMET/FACE]

• Additional AADL resources for CAMET subscribers can be found at: AADL Resources [https://
camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources]

• Framework for Analysis of Schedulability, Timing and Resources (FASTAR) tool suite plugin and documentation
(for CAMET subscribers): FASTAR [https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR]

• Continuous Virtual Integration Toolkit (CVIT) tool documentation (for CAMET subscribers): CVIT [https://
camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration]

Setup
• OSATE is available for download here: Latest stable OSATE version [https://osate-build.sei.cmu.edu/download/os-

ate/stable/latest/products/] (this guide was tested with version 2.3.4)

• OSATE installation instructions can be found here: OSATE Installation [http://osate.org/download-and-
install.html#new-installation]

Use these steps to add the prerequisite models to your OSATE workspace

1. Use the installation instructions from the OSATE site to download and install OSATE.

2. Download the prerequisite model archive camet-training.zip.

In addition to the models required to perform the training, this archive contains a "solution" project for each lesson
for your reference. The solution projects are located in training_materials directory and are named for their
relevent lesson number.

Use these steps to install the Basswood virtual machine on your workstation

https://www.adventiumlabs.com/camet/face
https://www.adventiumlabs.com/camet/face
https://www.adventiumlabs.com/camet/face
http://www.opengroup.org/face/information
http://www.opengroup.org/face/information
https://publications.opengroup.org/d207
https://publications.opengroup.org/d207
http://osate.org/about-osate.html
http://osate.org/about-osate.html
https://docs.rtems.org/branches/master/
https://docs.rtems.org/branches/master/
https://docs.rtems.org/branches/master/
https://adventiumlabs.com/CAMET/FACE
https://adventiumlabs.com/CAMET/FACE
https://adventiumlabs.com/CAMET/FACE
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
http://osate.org/download-and-install.html#new-installation
http://osate.org/download-and-install.html#new-installation
http://osate.org/download-and-install.html#new-installation

Integrated AADL Analysis

Copyright 2018 Adventium Labs 5

1. Basswood runs on a virtual machine. Download and install VirtualBox (v5.2 or higher) from here: VirtualBox
[https://www.virtualbox.org/]

2. Decompress the Basswood VM directory.

3. In the VirtualBox Manager window, go to Machine and select Add.... Navigate to the Basswood VM image
Basswood.vbox and click Open.

4. The Basswood VM will be listed in the VirtualBox Manager window. Select it and click Settings to open the
settings for Basswood.

5. In the Settings window under General go to Advanced and make sure bidirectional is selected for Shared Clipboard
and Drag'n'Drop. Click Ok. This will allow you to easily move files between your workstation and the Basswood
virtual machine.

6. Click Start to boot up Basswood.

7. Within the Basswood virtual machine you will be prompted to log in. The username and passwood are both
basswood.

Lesson 1. The BALSA Model

Prerequisites
• Download and unzip the latest stable release of OSATE on your workstation (see the section called “Setup”)

• Download the prerequisite models on your workstation (see the section called “Setup”)

• Have a basic understanding of AADL and BALSA (see the section called “Additional FACE and AADL Resources”)

Summary
In this section, you will learn how to:

1. Open and navigate in OSATE

2. Install the FACE Data Model to AADL Translator

3. Use the FACE Data Model to AADL Translator

4. Explore the BALSA AADL model using OSATE

5. Use OSATE tools to create and edit a diagram of your BALSA model

Navigating in OSATE
Open OSATE by clicking on Osate.exe in the unzipped OSATE archive downloaded as a prerequisite for this training
(see the section called “Setup”). OSATE is an open-source Eclipse-based AADL editor and will be used for the AADL
work in this training. OSATE has a number of possible views that are useful for navigating your AADL workspace.
The left side of the window is the AADL Navigator view, which lists all of the projects in your workspace. The far
right side of the screen is the Outline view, which displays all of the elements in the model you have open currently.
If these toolbars are missing go to Window>Show View and select Outline and Project Explorer.

1. Create a new project by going to File>New>AADL Project

https://www.virtualbox.org/
https://www.virtualbox.org/

Integrated AADL Analysis

Copyright 2018 Adventium Labs 6

2. Name it BALSA and click Finish

3. Locate your balsa.face file in the model archive (/models/balsa.face) and add it to your new BALSA
project by dragging it into the BALSA project in the AADL Navigator view.

You can open the balsa.face file by double clicking it in the AADL Navigator. The center portion of your OSATE
window is where the contents of your models are displayed. Since the balsa.face file is not written in AADL it
is displayed as a "read-only" system hierarchy.

What is BALSA?
Basic Avionics Lightweight Source Archetype (BALSA) is a working example of a system of FACE-aligned compo-
nents. It is a simple avionics control system with four units of portability (UoPs). BALSA has three platform specific
service segments (PSSS): an Embedded GPS/INS (EGI) controller that outputs position and altitude, an Aircraft Con-
fig service that outputs callsign and aircraft ID, and an Automatic Dependent Surveillance-Broadcast (ADS-B) com-
munication output component. There is a portable components segment (PCS) called the ATC manager that combines
the outputs of the EGI and Aircraft Config into information for the ADS-B component. The transport service segment
(TSS) routes messages between the UoPs. You will need to install the FACE Data Model to AADL Translator OSATE
plugin to translate the balsa.face file into its AADL equivalent.

Installing the FACE Data Model to AADL Translator
You can install supplemental components, such as the FACE Data Model to AADL Translator, from within OSATE
itself by following these steps.

1. Select Help>Install Additional OSATE Components.

2. Select FACE Data Model to AADL Translator in the popup window.

3. Click Finish to initiate the installation.

4. An Install dialog will appear with the Translator already selected. Click Next to continue.

5. After reviewing the installation details, click Next again.

6. Accept the terms of the license agreement, then click Finish to complete the installation.

7. A security dialog will warn that you are attempting to install software with unsigned content. Click on Install
anyway to continue.

8. A new dialog will instruct you to restart OSATE for your software changes to take effect. Unless you have other
tasks to complete first, click on Restart now.

9. After OSATE restarts, you can verify a correct installation by selecting Help>About OSATE2, click on Installa-
tion Details, and confirm that FACE Data Model to AADL Translator appears in the list of Installed Software.

Using the FACE Data Model to AADL Translator
Now that the translator is installed, you can use it to translate the balsa.face file into AADL. To use the translator,
navigate to the balsa.face file in the AADL Navigator toolbar and right click. Select the option translate to AADL
from the menu. The translator will produce a folder in your BALSA project named model-gen that contains four
AADL files (see Figure 1). You will learn more about the contents of these files in the next section. If your generated
model is filled with warnings or errors try re-building your model by going to Project>Clean... This will take a few
seconds will resolve any errors in your model.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 7

Figure 1. Translated BALSA Model Shown in the OSATE AADL Navigator

Exploring the BALSA AADL model
In the section called “Using the FACE Data Model to AADL Translator” you generated a BALSA model in AADL
using the FACE Data Model to AADL Translator plugin. The BALSA UoPs are modeled as thread groups each in their
own process. You are going to add properties and data flows to this model in the section called “Lesson 2. Modifying
the BALSA AADL Model” to perform latency analysis.

The autogenerated BALSA AADL model is organized into four files: balsa_data_model.aadl,
balsa_integration_model.aadl, balsa_PCS.aadl, and balsa_PSSS.aadl.

balsa_data_model.aadl contains the BALSA data type declarations and implementations. Each data type dec-
laration has FACE-specific properties that correspond to its FACE realization tier and its UUID. balsa_PCS.aadl
and balsa_PSSS.aadl contain the thread group, thread, and process declarations and implementations
for the four BALSA UoPs; ATCManager, ADSB, AirConfg, and EGI. Properties on the UoPs such as output rates
and UUIDs that are defined in the balsa.face file are automatically populated in the autogenerated AADL model.
Each thread group contains a single empty thread with a period of 1 second by default (see Example 1).

36 thread group implementation ATCManager.impl
37 subcomponents
38 thread0: thread {
39 Period => 1 sec;
40 };
41 end ATCManager.impl;

From [balsa_PCS.aadl]

Example 1. A Thread Declaration Generated by the FACE Data Model to AADL
Translator

balsa_integration_model.aadl contains the top-level integrated system with the relevant attributes
from the balsa.face model. The balsa_integration_model.aadl system implementation named
BALSA_Integration_Model.impl will be used for all of the analysis performed during this training. This sys-
tem implementation has eight subcomponents; four UoPs, a bus named UDP as well as three abstract transporter
components. These transporter components are the equivalent of the FACE notion of a TSS. The translator gen-
erates a transporter component for each interface between UoPs. These transporters can be packaged into
one or more abstract TSS components by the user depending on the configuration of their specific system. BALSA
traditionally has one TSS component. However, the packaging of the transporters is not specifically relevant to

Integrated AADL Analysis

Copyright 2018 Adventium Labs 8

the types of analysis covered in this tutorial, so it will not be included in the training content. There will be an optional
tutorial at the end of the section called “Lesson 2. Modifying the BALSA AADL Model” with an example of how to
package the TSS, but examples in later lessons will not include it. Next you will use the OSATE graphical editor to
generate a diagram of your AADL BALSA model similar to Figure 2.

Figure 2. AADL Graphical Model of the BALSA Architecture

Using OSATE tools to Create and View Diagrams
OSATE has the ability to automatically generate diagrams of component implementations from AADL code. AADL
diagrams serve as a useful visual representation of the system defined in the code.

To generate a diagram of the BALSA system:

1. Open the balsa_integration_model.aadl file by double clicking it in the AADL Navigator.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 9

2. Make sure that you have the Outline view open (see the section called “Navigating in OSATE”) and navigate to
the BALSA_Integration_Model.impl system implementation.

3. Right click the system implementation and choose Create Diagram...

4. In the opened window, name the diagram BALSA_Autogen, select Structure Diagram and click OK.

Your diagram should now be populated with your integrated BALSA system (see Figure 3).

Figure 3. AADL BALSA Architecture Diagram after Editing

AADL Diagrams are generated in a directory named diagrams. Diagrams can be edited, saved, and exported as
images. Change the sizes and locations of the diagram elements as necessary by clicking and dragging model elements
(see Figure 3). For more information about AADL diagrams go to Help>Help Contents>OSATE Graphical Editor
Documentation.

Lesson 2. Modifying the BALSA AADL Model

Prerequisites
• Complete the section called “Lesson 1. The BALSA Model” and have the translated AADL BALSA model in your

OSATE workspace

• Download and import the prerequisite model archive in your OSATE workspace (see the section called “Setup”)

Summary
In this section, you will learn how to:

1. Add data flow specifications to the BALSA AADL model

2. Add properties to an AADL model

3. Add threads to the AADL BALSA model

4. Add flow latency properties to an AADL model

5. Perform latency analysis on an AADL model

6. Optional: Package the transporters into a TSS

Introduction to Data Flows in AADL
AADL requires the modeler to explicitly declare the path(s) through the system through which data travels. Flows
are the AADL representation of how information flows through a system. In AADL, there are four types of data flows:
flow sinks, flow sources, flow paths, and end to end flows. A flow source denotes the
origin of a data flow and a flow sink denotes a data flow termination. A flow path defines the path through
a component that a data flow follows from input to output. End to end flows define the paths through the
system that information travels from a source component to a sink component. Like components, flows have both a
declaration as well as an implementation.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 10

The AADL model you generated in the section called “Lesson 1. The BALSA Model” using the FACE Data Model to
AADL Translator takes every UoP component port and generates a flow sink or flow source for it depending
on the port direction. You will have to add flow paths through the transporters as well as the ATC UoP to
build the end to end flows necessary for timing analysis. In the case of BALSA, you will define the paths
through the system that begin in the EGI and AirConfig UoPs and terminate in the ADSB UoP.

Adding Threads to the AADL BALSA Model
Navigate to the ATCManager thread group declaration in balsa_PCS.aadl. The thread declaration generated by
the translator is empty (see Example 2).

36 thread group implementation ATCManager.impl
37 subcomponents
38 thread0: thread {
39 Period => 1 sec;
40 };
41 end ATCManager.impl;

From [balsa_PCS.aadl]

Example 2. Empty Thread Declaration Generated by the FACE Data Model to AADL
Translator

Now compare it to the thread executable_thread in BALSA_Software.aadl in the BALSA_Software
prerequisite project. This thread has input and output data ports as well as a Compute_Execution_Time property
declaration (see Example 3).

From [/cygdrive/c/Repos/DO3/BAT/training_materials/BALSA_Software/BALSA_Software.aadl]

Example 3. A Thread with Worst Case Execution Time Specified

Move the BALSA_Software.aadl model file (located in the prerequisite model archive un-
der /training_materials/BALSA_Software) into your BALSA project by dragging it in-
to the model-gen folder. Go back to ATCManager in balsa_PCS.aadl and add
BALSA_Software::executable_thread.impl for the thread name in the subcomponents declaration
(see Example 4). Add with BALSA_Software; at the top of balsa_PCS.aadl to get rid of the model error
that appears.

50 thread group implementation ATCManager.impl
51 subcomponents
52 thread0: thread BALSA_Software::executable_thread.impl{
53 Period => 1 sec;
54 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 4. ATCManager Thread Group with a Thread Implementation

Now that the thread declaration is no longer empty, add connections after the subcomponents of the ATC-
Manager thread group (see Example 5).

Integrated AADL Analysis

Copyright 2018 Adventium Labs 11

57 connections
58 c01: feature ATC_From_AirConfig_Port -> thread0.input;
59 c02: feature ATC_From_EGI_Port -> thread0.input;
60 c03: feature thread0.output -> ATC_To_ADSB_Port;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 5. Thread Connections in the ATCManager Thread Group

Add a flows section above the properties section in the thread group declaration and create flow declarations
between the inputs and the output (see Example 6).

37 flows
38 AirConfig_To_ADSB_path: flow path ATC_From_AirConfig_Port ->
39 ATC_To_ADSB_Port;
40 EGI_To_ADSB_path: flow path ATC_From_EGI_Port -> ATC_To_ADSB_Port;
41
42 properties

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 6. Flow Declarations for ATCManager

Create implementations of these flow paths in the ATCManager.impl thread group implementation that go through
the thread (see Example 7). Note that the flow path implementations should have the same name as the declarations
you just created.

63 flows
64 AirConfig_To_ADSB_path: flow path ATC_From_AirConfig_Port -> c01 -> thread0
65 -> c03 -> ATC_To_ADSB_Port;
66 EGI_To_ADSB_path: flow path ATC_From_EGI_Port -> c02 -> thread0 -> c03 ->
67 ATC_To_ADSB_Port;
68

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 7. Flow Implementations for ATCManager

Replace the flow sink and flow source declarations in the process ATCManager_process with flow
paths between the two input ports and the output port (see Example 8).

90 flows
91 AirConfig_To_ADSB_path: flow path ATC_From_AirConfig_Port ->
92 ATC_To_ADSB_Port;
93 EGI_To_ADSB_path: flow path ATC_From_EGI_Port -> ATC_To_ADSB_Port;
94
95 end ATCManager_process;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 8. Flow Path Declarations for ATCManager

Integrated AADL Analysis

Copyright 2018 Adventium Labs 12

Now navigate to the implementation of the ATCManager process and create implementations of the flow paths that
travel through the ATCManager thread group (see Example 9). Note that the flow path implementations should have
the same name as the declarations you just created. You are adding detail to the original declaration now that more
detail about the system composition is available (i.e. subcomponents). The declaration defines the start and end point
of a flow, the implementation declares how it travels through the system.

105 flows
106 AirConfig_To_ADSB_path: flow path ATC_From_Airconfig_Port ->
107 ATC_From_AirConfig_Port_connection -> ATCManager.AirConfig_To_ADSB_path
108 -> ATC_To_ADSB_Port_connection -> ATC_To_ADSB_Port;
109
110 EGI_To_ADSB_path: flow path ATC_From_EGI_Port -> ATC_From_EGI_Port_connection
111 -> ATCManager.EGI_To_ADSB_path -> ATC_To_ADSB_Port_connection ->
112 ATC_To_ADSB_Port;
113
114 end ATCManager_process.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PCS.aadl]

Example 9. Flow Path Implementations for ATCManager

Repeat this process for balsa_PSSS.aadl in the ADSB thread group declaration above the properties (see
Example 10),

27 flows
28 flow_sink: flow sink ADSB_From_ATCManager_Port;
29
30 properties

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 10. ADSB Flow Declaration

ADSB.impl thread group implementation (see Example 11),

41 thread group implementation ADSB.impl
42 subcomponents
43 thread0: thread BALSA_software::executable_thread.impl {
44 Period => 1 sec;
45 };
46 connections
47 c01: feature ADSB_From_ATCManager_Port -> thread0.input;
48 flows
49 flow_sink: flow sink ADSB_From_ATCManager_Port -> c01 -> thread0;
50 end ADSB.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 11. Update the thread and declare thread flow implementations for ADSB

ADSB_process.impl process implementation (see Example 12),

Integrated AADL Analysis

Copyright 2018 Adventium Labs 13

63 process implementation ADSB_process.impl
64 subcomponents
65 ADSB: thread group ADSB.impl;
66 connections
67 ADSB_From_ATCManager_Port_connection: port ADSB_From_ATCManager_Port ->
68 ADSB.ADSB_From_ATCManager_Port;
69 flows
70 ADSB_From_ATCManager_Port_sink: flow sink ADSB_From_ATCManager_Port ->
71 ADSB_From_ATCManager_Port_connection -> ADSB.flow_sink;
72 end ADSB_process.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 12. Declare flows for the ADSB process

AirConfig thread group declaration (see Example 13),

83 flows
84 AirConfig_to_ATC_port_source: flow source AirConfig_to_ATC_port;
85
86 properties

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 13. Declare a flow for AirConfig

AirConfig.impl thread group implementation (see Example 14),

93 thread group implementation AirConfig.impl
94 subcomponents
95 thread0: thread BALSA_Software::executable_thread{
96 Period => 1 sec;
97 };
98 connections
99 c01: feature thread0.output -> AirConfig_to_ATC_port;
100
101 flows
102 AirConfig_to_ATC_port_source: flow source thread0 -> c01 ->
103 AirConfig_to_ATC_port;
104 end AirConfig.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 14. Thread Flow Implementations for AirConfig

A process provides memory space for thread groups and threads. The AirConfig_process.impl process
implementation (see Example 15) provides memory space for the AirConfig thread group. Flows originating or termi-
nating in a subcomponent of a process must have an explicit flow segment defining how they enter and exit the process.

117 process implementation AirConfig_process.impl

Integrated AADL Analysis

Copyright 2018 Adventium Labs 14

118 subcomponents
119 AirConfig: thread group AirConfig.impl;
120 connections
121 AirConfig_to_ATC_port_connection: port AirConfig.AirConfig_to_ATC_port ->
122 AirConfig_to_ATC_port;
123 flows
124 AirConfig_to_ATC_port_source: flow source AirConfig.AirConfig_to_ATC_port_source
125 -> AirConfig_to_ATC_port_connection -> AirConfig_to_ATC_port;
126 end AirConfig_process.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 15. Flows for the AirConfig Process

EGI thread group declaration above the properties (see Example 16),

137 flows
138 EGI_to_ATC_port_source: flow source EGI_to_ATC_port;
139
140 properties

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 16. Declare a flow for EGI

EGI.impl thread group implementation (see Example 17),

147 thread group implementation EGI.impl
148 subcomponents
149 thread0: thread BALSA_Software::executable_thread{
150 Period => 1 sec;
151 };
152 connections
153 c01: feature thread0.output -> EGI_to_ATC_port;
154 flows
155 EGI_to_ATC_port_source: flow source thread0 -> c01 -> EGI_to_ATC_port;
156 end EGI.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 17. Thread Flow Implementations for EGI

EGI process implementation (see Example 18),

169 process implementation EGI_process.impl
170 subcomponents
171 EGI: thread group EGI.impl;
172 connections
173 EGI_to_ATC_port_connection: port EGI.EGI_to_ATC_port -> EGI_to_ATC_port;
174 flows
175 EGI_to_ATC_port_source: flow source EGI.EGI_to_ATC_port_source ->

Integrated AADL Analysis

Copyright 2018 Adventium Labs 15

176 EGI_to_ATC_port_connection -> EGI_to_ATC_port;
177 end EGI_process.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 18. Flows for the EGI process

These components are only sources or sinks of data flows, so each thread group and process only needs one connection
and one data flow each. A flow source component is the origin of data (e.g. sensors) and a flow sink is
the terminal component in the information flow (e.g. actuators, memory, etc.). Information in AADL systems flows
from a flow source to a flow sink component. Flow paths denote intermediary components that pass the
information on to another component.

Adding End to End Flows to the AADL BALSA Model
Next you will define flow paths through the transporter components. These are located in
balsa_integration_model.aadl. Unlike the UoP components, there are no flow declarations for the trans-
porters generated by the translator. Add a flows section between the features and properties sections
of each of the three abstract transporter declarations with a flow path between input0 and output (see Exam-
ple 19).

98 flows
99 flow_path: flow path input0 -> output;
100
101 properties

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_integration_model.aadl]

Example 19. Flow Path for each Transporter

With all of the component flows declared, you are ready to add the end to end flows through the integrated
system necessary for latency analysis. Unlike the other types of flow declarations, end to end flows only have an
implementation. Navigate to BALSA_Integration_Model.impl in balsa_integration_model.aadl
and add a flows section below the connections. The end to end flow is declared from source to sink following
the logical flow from one component flow implementation to the next through connections. Examples of the end to
end flow declarations are shown in Example 20. Keep in mind that yours will differ slightly depending on what you
named the flow paths you created in the ATCManager and transporters. Create two end to end flows; one
from EGI through ATC to ADSB and one from AirConfig through ATC to ADSB (see Example 20). Notice that flow
declarations are called using the component_name.flow_name syntax while connections are called by name only.

70 flows
71 ETE_EGI: end to end flow Instance_of_EGI_UoP.EGI_to_ATC_port_source ->
72 connection0 -> Template_view_from_EGI_Data_transporter.flow_path ->
73 connection1 -> Instance_of_ATC_UoP.EGI_To_ADSB_path -> connection2
74 -> Template_view_from_ATC_Data_transporter.flow_path -> connection3
75 -> Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port_sink;
76
77 ETE_AirConfig: end to end flow
78 Instance_of_Air_Conf_UoP.AirConfig_to_ATC_port_source -> connection4
79 -> Template_view_from_Aircraft_Config_transporter.flow_path ->
80 connection5 -> Instance_of_ATC_UoP.AirConfig_To_ADSB_path -> connection2 ->
81 Template_view_from_ATC_Data_transporter.flow_path -> connection3 ->

Integrated AADL Analysis

Copyright 2018 Adventium Labs 16

82 Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port_sink;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_integration_model.aadl]

Example 20. End to End Flows

You will return to these end to end flows later when you are performing latency analysis. Generate another
diagram of your BALSA integration model and name it BALSA_with_Flows (see Figure 4). Notice that you will
have to edit this diagram as you did in the section called “Using OSATE tools to Create and View Diagrams”.

Figure 4. Edited BALSA Integration Model

If your data flows are defined correctly then you should see a clear data flow path through your BALSA system. Any
sections that are missing in your diagram indicate that something is missing or incorrect in your flow declarations.

Adding Properties to an AADL Model
AADL model elements can be tagged with properties used for various types of analysis. Property types are declared
in property sets, which are AADL files that define the attributes of properties such as units, types, and ranges. AADL
comes with some pre-defined property sets located in the Plugin_Contributions directory. Users can write

Integrated AADL Analysis

Copyright 2018 Adventium Labs 17

their own property sets to use with their models or reference these predefined property sets. To add a property to a
model, you must first include the name of the property set at the top of your model in a with clause in the same way
that you would reference an AADL model.

To add properties to an AADL component, add a properties declaration within a chosen element (see Example 21).
Properties are declared using the syntax of Property_Set_Name::Property. As mentioned in earlier sections, the trans-
lator automatically populates the model with some properties inferred from the FACE model.

26 properties
27 FACE::Segment => PSSS;
28 FACE::Profile => safety;
29 FACE::UUID => "_hwTh9EM1EeiBlKadCQCZ8Q";

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L1_balsa/balsa_PSSS.aadl]

Example 21. Sample Properties Generated from the FACE data model

Properties can be added for the purpose of model annotation, analysis, or both. Add Code_Size properties to the
four UoP thread groups in balsa_PCS.aadl and balsa_PSSS.aadl with reasonable values for BALSA (e.g.
1000 bytes). Code_Size is from one of the predefined property sets, so you do not have to include the property
set name for these declarations. Properties like Code_Size enable quanititaive analysis to be performed by OSATE
plugins (see Example 22).

37 Code_Size => 1000 bytes;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_PSSS.aadl]

Example 22. Add a code size property

Performing Latency Analysis on the AADL BALSA Model
The latency analysis tool is one of the standard OSATE tools that takes timing properties in your AADL model and
calculates expected latency values for full end to end system flows. The threads that you added to your AADL BALSA
model in the section called “Adding Threads to the AADL BALSA Model” have an execution time property. Go to
the transporters in balsa_integration_model.aadl and add a Latency property declaration on each flow
path (see Example 23). This property is declaring that there is a latency of 1-2 ms associated with communications
across the TSS.

118 properties
119 Latency => 1 ms .. 2 ms applies to flow_path;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_integration_model.aadl]

Example 23. Latency Property on each Flow Path

Go the the end to end flows in BALSA_Integration_Model.impl in
balsa_integration_model.aad and add a Latency property declaration (see Example 24). This is your la-
tency budget for the BALSA system, which will be compared to the latency analysis results.

85 properties

Integrated AADL Analysis

Copyright 2018 Adventium Labs 18

86 Latency => 10 ms .. 20 ms applies to ETE_EGI, ETE_Airconfig;
87 end BALSA_Integration_Model.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_integration_model.aadl]

Example 24. End to End Latency Budget

With these added latency properties, you have enough information to perform latency analysis on your AADL BALSA
model. AADL Analysis tools use instance models as input, which resolve the attributes of the declarations and im-
plementations into a single component representation and build the full system hierchy of the components. Generate
an instance model of your BALSA system by right clicking the BALSA_Integration_Model.impl abstract
implementation in the Outline view and select Instantiate System. Locate the instance model in the instances
directory and select it. Go to Analyses>Timing>Check Flow Latency. The results of latency analysis will be added
to a directory named reports that will be generated in the instances directory. Open the CSV report and verify
that the Min Actual latency of both flows is 11.0 ms. Note that the Max Actual latency is 2010 ms due to the 1 second
sampling delay that was generated by the translator for each thread group (see Figure 5).

Figure 5. Latency Report

This report shows both a failure case as well as a successful one. Line 21 shows that the actual minimum latency of 11
ms is within the specified budget, so the test was successful. However, line 22 shows an error message that states the
actual maximum latency of 2010 ms is above the upper latency bound of 20 ms. This error is coupled with a warning
on both the instance model as well as the latency report.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 19

Optional: Packaging the Transporters into a single TSS
Example
The transporter segment abstracts generated by the FACE Data model to AADL translator can be packaged in
AADL into a single TSS. The translator is a generic tool that cannot infer how many TSS components exist in
a system. It generates a transporter for every UoP interface. It is up to the user to define how these transporter
segments relate to the actual TSS configuration of the system. In the case of BALSA, there is one TSS com-
ponent, so you are going to package all of the transporters into one component. In your BALSA AADL project,
create a copy of balsa_integration_model.aadl and name it balsa_integration_TSS.aadl.
You will want this model separate from the integration model that you will be using for the remain-
der of the training. Rename BALSA_Integration_Model to BALSA_Integration_Model_TSS so
you do not get it confused with the integration model used in the training. Create a new TSS abstract
component and TSS.impl implementation and cut and paste the transporters from the subcomponents of
BALSA_Integration_Model_TSS.impl to be subcomponents of TSS.impl (see Example 25). This should
generate several warnings in BALSA_Integration_Model_TSS.impl. You will resolve these later in this sec-
tion.

211 abstract implementation TSS.impl
212 subcomponents
213 Template_view_from_EGI_Data_transporter:
214 abstract Template_view_from_EGI_Data_transporter;
215 Template_view_from_ATC_Data_transporter:
216 abstract Template_view_from_ATC_Data_transporter;
217 Template_view_from_Aircraft_Config_transporter:
218 abstract Template_view_from_Aircraft_Config_transporter;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_TSS_package.aadl]

Example 25. TSS Abstract Component

Add features to the TSS abstract: one input and one output for each transporter. Copy the properties of each
feature from the corresponding ports on the transporters to the TSS features. Create connections
from each of the TSS ports to their corresponding transporter ports (see Example 26).

167 abstract TSS
168 features
169 EGI_input: in feature
170 balsa_data_model::EGI_Data_Platform.impl {
171 FACE::UUID => "_hwdLZEM1EeiBlKadCQCZ8Q";
172 };
173
174 EGI_output: out feature
175 balsa_data_model::EGI_Data_Platform.impl {
176 FACE::UUID => "_hwdLY0M1EeiBlKadCQCZ8Q";
177 };
178
179 ATC_input: in feature
180 balsa_data_model::ATC_Data_Platform.impl {
181 FACE::UUID => "_hwdLZ0M1EeiBlKadCQCZ8Q";
182 };
183

Integrated AADL Analysis

Copyright 2018 Adventium Labs 20

184 ATC_output: out feature
185 balsa_data_model::ATC_Data_Platform.impl {
186 FACE::UUID => "_hwdLZkM1EeiBlKadCQCZ8Q";
187 };
188
189 Aircraft_input: in feature
190 balsa_data_model::Aircraft_Config_Platform.impl {
191 FACE::UUID => "_hwdLakM1EeiBlKadCQCZ8Q";
192 };
193
194 Aircraft_output: out feature
195 balsa_data_model::Aircraft_Config_Platform.impl {
196 FACE::UUID => "_hwdLaUM1EeiBlKadCQCZ8Q";
197 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_TSS_package.aadl]

Example 26. TSS Features

Add flow path declarations and implementations that start and end at the TSS ports and go through your newly
created connections and the relevant transporter (see Example 27 and Example 28).

200 flows
201 EGI_flow_path: flow path EGI_input -> EGI_output;
202
203 ATC_flow_path: flow path ATC_input -> ATC_output;
204
205 Aircraft_flow_path: flow path Aircraft_input ->
206 Aircraft_output;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_TSS_package.aadl]

Example 27. TSS Flow Paths

230 flows
231 EGI_flow_path: flow path EGI_input -> EGI_in ->
232 Template_view_from_EGI_Data_transporter.flow_path -> EGI_out
233 -> EGI_output;
234
235 ATC_flow_path: flow path ATC_input -> ATC_in ->
236 Template_view_from_ATC_Data_transporter.flow_path -> ATC_out
237 -> ATC_output;
238
239 Aircraft_flow_path: flow path Aircraft_input -> Aircraft_in ->
240 Template_view_from_Aircraft_Config_transporter.flow_path ->
241 Aircraft_out -> Aircraft_output;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L2_balsa/balsa_TSS_package.aadl]

Example 28. TSS Flow Path Implementations

Now navigate back to BALSA_Integration_Model_TSS.impl and add TSS.impl as a subcompo-
nent. Replace any references to the original flows though and connections to the transporters in

Integrated AADL Analysis

Copyright 2018 Adventium Labs 21

BALSA_Integration_Model_TSS.impl with their equivalent flows through and connections to the TSS sub-
component you just added (see Example 29). This should resolve the model warnings that appeared earlier.

27 system implementation BALSA_Integration_Model_TSS.impl
28 subcomponents
29
30 Example_Processor: processor Example_Proc.impl;
31
32 Instance_of_ATC_UoP: process
33 balsa_PCS::ATCManager_process.impl {
34 FACE::UUID => "_hwdLUUM1EeiBlKadCQCZ8Q";
35 };
36
37 Instance_of_EGI_UoP: process
38 balsa_PSSS::EGI_process.impl {
39 FACE::UUID => "_hwdLVUM1EeiBlKadCQCZ8Q";
40 };
41
42 Instance_of_Air_Conf_UoP: process
43 balsa_PSSS::AirConfig_process.impl {
44 FACE::UUID => "_hwdLV0M1EeiBlKadCQCZ8Q";
45 };
46
47 Instance_of_ADSB_UoP: process
48 balsa_PSSS::ADSB_process.impl {
49 FACE::UUID => "_hwdLWUM1EeiBlKadCQCZ8Q";
50 };
51
52 UDP: bus {
53 FACE::UUID => "_hwdLa0M1EeiBlKadCQCZ8Q";
54 };
55
56 TSS: abstract TSS.impl;
57
58 connections
59 connection0: feature Instance_of_EGI_UoP.EGI_to_ATC_port ->
60 TSS.EGI_input {FACE::UUID => "_hwdLXEM1EeiBlKadCQCZ8Q";
61 };
62
63 connection1: feature TSS.EGI_output ->
64 Instance_of_ATC_UoP.ATC_From_EGI_Port {
65 FACE::UUID => "_hwdLXUM1EeiBlKadCQCZ8Q";
66 };
67
68 connection2: feature Instance_of_ATC_UoP.ATC_To_ADSB_Port
69 -> TSS.ATC_input {FACE::UUID => "_hwdLXkM1EeiBlKadCQCZ8Q";
70 };
71
72 connection3: feature TSS.ATC_output ->
73 Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port {
74 FACE::UUID => "_hwdLX0M1EeiBlKadCQCZ8Q";
75 };
76

Integrated AADL Analysis

Copyright 2018 Adventium Labs 22

77 connection4: feature Instance_of_Air_Conf_UoP.AirConfig_to_ATC_port
78 -> TSS.Aircraft_input {FACE::UUID => "_hwdLYEM1EeiBlKadCQCZ8Q";
79 };
80
81 connection5: feature TSS.Aircraft_output ->
82 Instance_of_ATC_UoP.ATC_From_AirConfig_Port {
83 FACE::UUID => "_hwdLYUM1EeiBlKadCQCZ8Q";
84 };
85
86 flows
87 ETE_EGI: end to end flow Instance_of_EGI_UoP.EGI_to_ATC_port_source ->
88 connection0 -> TSS.EGI_flow_path ->
89 connection1 -> Instance_of_ATC_UoP.EGI_To_ADSB_path -> connection2
90 -> TSS.ATC_flow_path -> connection3
91 -> Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port_sink;
92
93 ETE_AirConfig: end to end flow
94 Instance_of_Air_Conf_UoP.AirConfig_to_ATC_port_source -> connection4
95 -> TSS.Aircraft_flow_path ->
96 connection5 -> Instance_of_ATC_UoP.AirConfig_To_ADSB_path ->
97 connection2 -> TSS.ATC_flow_path -> connection3 ->
98 Instance_of_ADSB_UoP.ADSB_From_ATCManager_Port_sink;
99

From [balsa_TSS_package.aadl]

Example 29. Update flow declarations

If your model is error free, then you have successfully implemented your TSS. Generate and rearrange a diagram of
this system as you did in the section called “Using OSATE tools to Create and View Diagrams” and the section called
“Introduction to Data Flows in AADL” (see Figure 6).

Integrated AADL Analysis

Copyright 2018 Adventium Labs 23

Figure 6. BALSA with TSS

Lesson 3. Executing a BALSA-Derived Demon-
stration System
Prerequisites
• Download and install the prerequisite model archive in your OSATE workspace (see the section called “Setup”)

• Install the Basswood Real-Time Executive for Multiprocessor System (RTEMS) build environment on your work-
station (see the section called “Setup”)

• Install the FASTAR Tool Suite as well as the ARINC653 Configuration Generator Plugin (see the section called
“Additional FACE and AADL Resources”)

Summary
In this lesson, you will learn how to:

1. Configure the Basswood model's real-time execution attributes

2. Generate source code from the Basswood model

3. Build and run the example application generated from the model on the real-time execution environment

Introduction to Basswood
From this lesson on, you will be working with a new AADL model named Basswood. Create an AADL project named
Basswood and copy and paste the Basswood AADL model files from the prerequisite model archive in it (located
in /data_model/training_Basswood).

Integrated AADL Analysis

Copyright 2018 Adventium Labs 24

Basswood is a subset of BALSA with only an ATC, AirConfig, and EGI. It is the AADL equivalent of the example
you are going to work with on RTEMS (see Figure 8). The Basswood AADL model was generated using the same
translator you used in the section called “Lesson 1. The BALSA Model” and then altered to more closely resemble
the configuration used in the RTEMS example.

Figure 7. AADL Graphical Model of the RTEMS Basswood
Demo Processor, Process, and Communication Infrastructure

The FACE Data Model to AADL Translator, by default, generates thread groups each in their own process. RTEMS
does not have memory partitioning, so all of the UoP thread groups in Basswood are in the same process named
rtems.impl in the file basswood_schedule.aadl.

Figure 8. AADL Graphical Model of the Basswood
Demo UoP Thread Groups in the rtems.impl Processor

As in the BALSA example, the top-level integration system is Basswood_Integration_Model.impl
located in the file basswood_integration_model. Open this file and navigate to
Basswood_Integration_Model.impl in the Outline view. Right click the implementation and select the
menu option Instantiate. You will use this instance model later to generate source code for RTEMS.

Configuring Basswood Real-Time Attributes

In this example you will execute a BALSA-based training model application, named Basswood, on RTEMS. You will
be using RTEMS to verify your models using a real-world system. This tutorial runs RTEMS in an emulator.

There are two task attributes that impact the real-time scheduling of the training example, applied to the producer EGI
and AirConfig tasks and the consumer ATC task. The two attributes are:

Integrated AADL Analysis

Copyright 2018 Adventium Labs 25

1. Timing_Properties::Period defines the length of that time interval in which the task is periodically in-
voked, and

2. Timing_Properties::Deadline defines the maximum execution time for a single (contiguous) execution
of the task.

The training example uses the rate-monotonic scheduler (RMS) employed by the RTEMS execution environment (see
Figure 8 for more information). By adjusting the period and deadline attributes on the EGI, AirConfig, and ATC
tasks, you can modify the timing of the task invocations. It is possible, for example, to configure the EGI, AirConfig,
and ATC periods and deadlines in a way that causes messages from the EGI to get dropped, or for one of the tasks
to miss an iteration deadline.

Configuring the Real-Time Execution Environment

Before you generate source code from the model, examine the project properties that define how the Basswood model
is configured in the real-time execution environment. In OSATE, verify that you have the Configuration Generation
plugin installed by going to Help>About OSATE2>Installation Details. Look for a plugin named ARINC653 Con-
figuration Generator under the Installed Software tab. If this plugin is not listed, follow the installation instructions
found in the LynxOS-178B Configuration Generation User Guide (see the section called “Setup”). Invoke the Prefer-
ences menu under Window and select RTOS Config. For the Target RTOS property, select RTEMS. The remainder
of the properties on this screen address alternative RTOS configurations. Click Apply and Close.

Generating Source Code and Running the Real-Time Ap-
plication

To generate RTOS source code for the model, in OSATE generate an instance of
Basswood_Integration_Model.impl in basswood_integration_model as you did in the section
called “Lesson 2. Modifying the BALSA AADL Model”. Select the instance file in the AADL Navigator and select
the Generate RTOS Configuration menu option under the RTOS menu. A dialog will appear when the code generation
is complete.

The generated source file named scheduling.c identifies the scheduling parameters of the EGI, AirConfig, and
ATC components. This file is generated in the same directory as the Basswood AADL files.

Next, start the Basswood VirtualBox virtual machine (VM), which contains the RTEMS execution environment build
in a Linux Ubuntu installation (See the section called “Setup”). Note that in the following examples the shorthand ~/
is occasionally used to denote the virtual machine path /home/basswood Double-click on the Basswood image,
and when the login prompt appears, type the password basswood (lowercase) (See Figure 9).

Integrated AADL Analysis

Copyright 2018 Adventium Labs 26

Figure 9. Basswood Virtual Machine

Share your OSATE workspace with the Basswood VM by going to Machine>Settings.... Under Shared Folders click
the blue folder icon on the right side (see Figure 10).

Figure 10. Shared Folder Menu

Create a new shared folder named basswoodworkspace with the Auto-mount and Make Permanent options select-
ed. For Folder Path click the arrow on the right side and navigate to the Basswood folder in your OSATE workspace.
Click OK. Verify that the Basswood folder has full access rights and click OK.

From the virtual machine console, create a mount point and mount the share using the following commands, as also
shown in Figure 11.

 $ mkdir /home/basswood/basswoodworkspace
 $ sudo mount -t vboxsf -o uid=1000,gid=1000 \

Integrated AADL Analysis

Copyright 2018 Adventium Labs 27

 basswoodworkspace /home/basswood/basswoodworkspace

As before, the password is "basswood" in all lower case. Note that Ubuntu does not show any characters while you
type your password in the command shell.

Figure 11. Mounting the Shared Workspace in the Basswood VM

Copy the basswood directory from your host machine share into /home/basswood/development. The exact organization
of the host machine share depends on your configuration, but the command will look like the following:

 $ cp -R /home/basswood/basswoodworkspace/basswood \
 /home/basswood/development

Enable execution of the run script in /home/basswood/development/basswood using the following com-
mand:

 $ chmod +x /home/basswood/development/basswood/run

Copy the generated file scheduling.c over to the RTEMS environment, under the directory ~/develop-
ment/basswood/autogen/Basswood. Replace the existing scheduling.c if necessary.

In the Basswood VM execution environment, bring up a terminal and go to the ~/development/basswood di-
rectory (see Figure 12). Build the example FACE-RTEMS system by typing

 $ make main

Integrated AADL Analysis

Copyright 2018 Adventium Labs 28

Figure 12. Basswood Build Terminal

When the build is complete, you can invoke a simple script to execute the example model in the RTEMS run-time
environment.

 $./run

The EGI and AirConfig components will periodically send simulated aircraft and position data to the ATC component.
The ATC component receives the data and simply prints out the results as it receives it. The results are streamed to
the terminal output. The system is designed to terminate automatically after 10 sets of message iterations between
the components, and the number of missed ATC periods is listed at the end. The RTEMS environment will then re-
initialize and restart the system. You can stop the run by pressing Control-c.

Descriptions of error codes printed by RTEMS can be found in the online RTEMS documentation [https://
docs.rtems.org/branches/master/c-user/directive_status_codes.html].

Lesson 4. Utilization Analysis

Prerequisites
• Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-

wood model in your OSATE workspace

• Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-
wood demo running on RTEMS

• Install the FASTAR Tool Suite prerequisite tools (see the section called “Additional FACE and AADL Resources”)

https://docs.rtems.org/branches/master/c-user/directive_status_codes.html
https://docs.rtems.org/branches/master/c-user/directive_status_codes.html
https://docs.rtems.org/branches/master/c-user/directive_status_codes.html

Integrated AADL Analysis

Copyright 2018 Adventium Labs 29

Summary
In this lesson, you will learn how to:

1. Add utilization properties to the Basswood AADL model

2. Perform utilization analysis on the Basswood AADL model using the FASTAR tool suite.

3. Demonstrate utilization with Basswood on RTEMS

4. Demonstrate success and failure Basswood on RTEMS

5. Demonstrate utilization failure with the AADL BALSA model

Adding Utilization Properties to the Basswood Model
You learned how to add properties to your AADL models and perform latency analysis using the OSATE tool suite in
the section called “Lesson 2. Modifying the BALSA AADL Model”. Now you are going to add FASTAR utilization
properties to perform utilization analysis on the Basswood AADL model (see Figure 13) using the FASTAR tool suite
installed as a prerequisite for this lesson. Recall from the section called “Introduction to Basswood” that Basswood is
a subset of BALSA and is the example you are working with on RTEMS (see Figure 14).

Figure 13. AADL Graphical Model of the RTEMS Basswood
Demo Processor, Process, and Communication Infrastructure

Figure 14. AADL Graphical Model of the Basswood
Demo UoP Thread Groups in the rtems.impl Processor

The FASTAR suite includes tools to perform utilization and schedule analysis. Utilization analysis verifies that the
resources (e.g. processors, busses, memory) are able to meet the computational, communication, and storage demands
of the system (for more information see section 5 of the FASTAR User Guide [https://camet.adventium.com/CAMET/

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

Copyright 2018 Adventium Labs 30

CAMET/wikis/tool_pages/FASTAR]). Schedulability analysis determines whether the worst case execution times are
within the deadlines declared it the model. Verify that the FASTAR property set has been installed with the tool suite
by locating it in the Plugin_Contributions directory under Adventium. To perform FASTAR utilization
analysis on the Basswood model, you need to include timing and demand properties and hardware. The Basswood
model has (in basswood_schedule.aadl) a single thread in each UoP thread group in the rtems.impl
process. Each thread group has a period property declaration assigned to it (see Example 30).

44 process implementation rtems.impl
45 subcomponents
46 ATCManager: thread group basswood_PCS::ATCManager.impl{
47 period => 100ms;
48 };
49 EGI: thread group basswood_PSSS::EGI.impl{
50 period => 200ms;
51 };
52 AirConfig: thread group basswood_PSSS::AirConfigUoP.impl{
53 period => 1000ms;
54 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_schedule.aadl]

Example 30. A Sample Thread Execution Period Property

First, add FASTAR processor demand properties to each of the UoP thread groups. Open basswood_PSSS.aadl
and basswood_PCS.aadl. Add a with FASTAR declaration to the top of each model. Declare a MIPS_Demand
of 100.0 MIPS and a Code_Size of 10 Kbyte for the AirConfig, and EGI thread groups in
basswood_PSSS.aadl. Next declare a MIPS_Demand of 250.0 MIPS and a Code_Size of 30 Kbyte for
ATCManager in basswood_PCS.aadl. An example of the property declaration syntax is given in Example 31.
MIPS_Demand (million instructions per second) is a measure of the demand of a given piece of software on a proces-
sor.

89 properties
90 FACE::Segment => PSSS;
91 FACE::Profile => safety;
92 FACE::UUID => "_hwTiA0M1EeiBlKadCQCZ8Q";
93 FASTAR::MIPS_Demand => 100.0 MIPS;
94 Code_Size => 10 Kbyte;
95 end EGI;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_PSSS.aadl]

Example 31. EGI Thread Group with Resource Demand Properties

In addition to the process rtems the basswood_schedule.aadl file contains the processor qemu_x86. This is
the hardware component to which you will be binding your Basswood software model. It has several timing properties
laid out in the processor implementation declaration (see Example 32).

74 processor implementation qemu_x86.impl
75 properties
76 Clock_Period => 10 ms;
77 FASTAR::Packet_Header_Size => 100 Bytes .. 100 Bytes;
78 Transmission_Time => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

Copyright 2018 Adventium Labs 31

79 end qemu_x86.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_schedule.aadl]

Example 32. Hardware Configuration for the Basswood Model

These properties outline the runtime behavior of the processor. None of these properties are relevant for the utilization
analysis portion of the training. You will return to them in the section called “Lesson 6. Schedulability Analysis”
for performing schedulability analysis. AADL properties can be added to components in two ways: directly on the
component declaration or implementation as shown above, or they can be added in { } brackets when the component
is included as a subcomponent of a higher level system. You will be adding the processor supply properties using
the latter method to avoid confusing the utilization property declarations with the existing runtime properties used for
schedulability analysis.

Navigate to basswood_integration_model.aadl. Within Basswood_Integration_Model.impl
find the processor x86 subcomponent and add a properties section with MIPS_Supply and Memory_Size prop-
erties as in Example 33.

24 system implementation Basswood_Integration_Model.impl
25 subcomponents
26 proc: process basswood_schedule::rtems.impl;
27 x86 : processor basswood_schedule::qemu_x86.impl {
28 FASTAR::MIPS_Supply => 1000.0 MIPS;
29 Memory_Size => 1 MByte;
30 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_integration_model.aadl]

Example 33. Supply and Memory Size Properties for the Basswood System

Now bind the software UoPs to your newly added hardware. A hardware binding is the AADL con-
truct that declares how software logic is partitioned into the available hardware. In the case of Basswood,
all of the software is running in the same process on a single processor. Hardware bindings are captured as
Actual_Processor_Binding and Actual_Memory_Binding properties in the top system implementation
Basswood_Integration_Model.implwith the syntax in Example 34.

61 properties
62 Actual_Processor_Binding => (reference (x86)) applies to proc;
63 Actual_Memory_Binding => (reference (x86)) applies to proc;
64 Actual_Connection_Binding => (reference(queue)) applies to connection0,
65 connection1, connection2, connection3;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_integration_model.aadl]

Example 34. Bind Properties Associating Basswood Software to Hardware

Note that there is already an Actual_Connection_Binding property declaration in the model. The connections
between system elements are bound to the queue virtual bus component, indicating that all of the system communi-
cations share a single communication queue.

Performing Utilization Analysis on the Basswood Model
Now that your model has both supply and demand properties, you will perform utilization analysis on the
processor. Recall from the section called “Lesson 2. Modifying the BALSA AADL Model” that AADL analy-

Integrated AADL Analysis

Copyright 2018 Adventium Labs 32

sis is performed on instance models. Generate an instance model of your Basswood system by right clicking the
Basswood_Integration_Model.impl abstract implementation in the Outline view and select Instantiate Sys-
tem. Locate your the instance model in the instances folder and click on it to select it. Under the Model Analysis
menu select Analyze Utilization. The results of your analysis should appear in a new folder named analysis and its
sub directory named reports. The FASTAR utilization analysis tool generates two outputs: XML and CSV. Open
the CSV report and verify that your analysis was successful by comparing it to the example shown in Figure 15.

Figure 15. FASTAR Utilization Report in Comma Separated Value Format

From the report example in Figure 15, you can see that the processor is able to run Basswood with a MIPS utiliza-
tion of 0.45 and a memory utilization of 0.05 as shown in the highlighted row. Utilization values are proportional;
memory utilization of 0.05 means that 5% of available memory is used. These are both feasible values for Basswood
running on RTEMS. This is an example of a successful utilization analysis result. In the section called “Demonstrate
a Utilization Failure in AADL” you will see an example of a utilization analysis failure. Next you will demonstrate
this utilization example using Basswood on RTEMS.

Utilization Success of Basswood on RTEMS
Now you will run this example in the RTEMS execution environment. Start the RTEMS VirtualBox virtual machine
(see the section called “Generating Source Code and Running the Real-Time Application” for instructions). Bring up
a command line terminal and change the directory to ~/development/basswood/autogen/Basswood, and
start an editor on the source file utilization.c.

 $ vi utilization.c

The contents of the file will look something like the following:

 #include <basswood.h>

 rtems_interval egi_demand = 0;
 rtems_interval atc_demand = 0;
 rtems_interval airconfig_demand = 0;

These values represent the time (in milliseconds) per iteration consumed by the EGI, ATC, and AirConfig components
respectively. These values are independent of the period and deadline properties defined on these components,
so a system architect can configure the system so that one or more of the components consume more time in their
execution than is budgeted, and as a result deadlines are missed.

You will begin, however, with an example that achieves successful utilization for the three example components in the
system, EGI, ATC, and AirConfig. Successful utilization means that all three components execute completely without
missing their deadlines. In the editor, set the processing demand value to the following:

Integrated AADL Analysis

Copyright 2018 Adventium Labs 33

 rtems_interval egi_demand = 1;
 rtems_interval atc_demand = 10;
 rtems_interval airconfig_demand = 1;

This defines the execution times for the EGI, ATC, and AirConfig components to be 1 ms, 10 ms, and 1 ms respectively.
If the value of the demand is zero, than the component will instead use its period length to represent its demand,
effectively assigning the component 100 percent utilization.

You will have to rebuild the system once the changes are made. Save your changes to utilization.c and exit the
editor (:wq). Then go to the ~/development/basswood directory. Build the example FACE-RTEMS system
(see Figure 12) by typing

 $ make main

When the build is complete, you can invoke the run script to execute the example model in the RTEMS run-time
environment.

 $./run

If everything is set correctly, the example will complete 10 iterations without missing a deadline.

Utilization Failure of Basswood on RTEMS

In this section we will reconfigure the example so that the utilization is over-budgeted for one of the threads and
as a result deadlines are missed. In the RTEMS VirtualBox virtual machine, return to the directory where the
utilization.c resides, ~/development/basswood/autogen/Basswood, and open the file in an editor
again. Then change the value of the AirConfig demand to be 90 ms.

 rtems_interval egi_demand = 1;
 rtems_interval atc_demand = 10;
 rtems_interval airconfig_demand = 90;

This change will force the utilization of the AirConfig thread to a percentage that causes ATC thread to miss deadlines.
Rebuild the system and invoke the run script to demonstrate a missed deadline.

Demonstrate a Utilization Failure in AADL

Now you will use your Basswood AADL model to recreate a utilization failure similar to what you observed on
RTEMS. Navigate to your MIPS_Demand property declarations on ATCManager, AirConfig, and EGI and
change them to all to 350 MIPS. Changes to the AADL model made after instantiation are not reflected in existing
instance models or analysis results, so you will have to reinstantiate Basswood_Integration_Model.impl by
right clicking the instance model and selecting the option Reinstantiate. Make sure that your utilization analysis output
files are closed and go to Model Analysis>Analyze Utilization to update the output files with the new MIPS demand
values. The tool will generate a model error at the Actual_Processor_Binding property declaration indicating
that the processor is over-utilized (see Figure 16).

Integrated AADL Analysis

Copyright 2018 Adventium Labs 34

Figure 16. Error Report

Open the CSV file to verify that the processor is over-utilized. The processor in this configuration has a utilization of
1.05 indicating that the processor is indeed overloaded by this configuration as shown in Figure 17 in the highlighted
row.

Figure 17. Utilization Failure

Now that you have demonstrated the utilization failure case, go back into basswood_PSSS.aadl and
basswood_PCS.aadl and change the MIPS_Demand properties back to their initializer values from the section
called “Adding Utilization Properties to the Basswood Model”. Reinstantiate the model and perform Utilization analy-
sis once more to remove the warning generated by the failure case.

Lesson 5. Report Generation

Prerequisites
• Complete the section called “Lesson 4. Utilization Analysis” and have the AADL Basswood model with utilization

properties in your OSATE workspace

• Download and install the prerequisite model archive in your OSATE workspace (see the section called “Setup”)

• For optional content: Have the CVIS prerequisite tools installed (see the section called “Additional FACE and
AADL Resources”)

Summary
In this lesson, you will learn how to:

1. Generate Example Templates

2. Generate a report of your FASTAR utilization analysis

3. Optional: Automate analysis and report generation tasks using Ant

Creating an Example Report Template
The FASTAR Utilization analysis plugin generates two different output files: CSV and XML. The FASTAR tool
suite includes a report generation tool that takes the XML output from any analysis tool and builds a format-

Integrated AADL Analysis

Copyright 2018 Adventium Labs 35

ted report using a user-specified template. Example templates can be created for HTML and CSV output reports.
Switch OSATE to the XML perspective by selecting the Open Perspective icon in the top right of the OSATE
window. Select XML and click Open. Your workspace view on the left side of the screen should now be called
Project Explorer. Navigate to the .xml output file from the utilization analysis you performed in the section
called “Lesson 4. Utilization Analysis”. It is located in the analysis directory in your Basswood project. Right click
Basswood_Integration_Model_impl_utilization.xml and select the option Create Report Templates.
This will create a new subdirectory under analysis named templates. Within this subdirectory is a folder named
fastar_utilization which contains two template files. These are example templates for formatting the results
of your utilization analysis. For more information on template-based report generation see section 4 of the FASTAR
User Guide [https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR].

Generating a Formatted FASTAR Utilization Report

Once you have verified that the templates were successfully created, return to
Basswood_Integration_Model_impl_utilization.xml and right click to select the option Generate
Reports. This will generate a report for each template in the templates directory. Formatted reports are found in
the reports subdirectory of analysis. The report generator generated a CSV (see Figure 19) and HTML (see
Figure 18) report of your utilization analysis results. Open both reports and verify that they were successfully popu-
lated. Scroll down to the table titled x86 to find your analysis results in the HTML report.

Figure 18. Example HTML Formatted Utilization Report

Figure 19. Example CSV Formatted Utilization Report

Optional: Automating Analysis and Report Generation
using Ant

Ant allows a user to automate a workflow using a script called a build.xml file that calls the Ant tasks that consti-
tute the workflow. To create your own Ant workflow for performing utilization analysis and generating a formatted
report, navigate to your Basswood AADL project. Verify that you are in the XML perspective by selecting the Open
Perspective icon in the top right of the OSATE window. Select XML and click Open. Create a build.xml file by
going to File>New>XML File. Name it build.xml and click Finish. There is an example Ant build script in the
Report_Gen project that you can look at for guidance (see Example 35).

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

Copyright 2018 Adventium Labs 36

Example 35. Sample Ant build script

The FASTAR suite includes a set of Ant tasks for automating the steps of performing FASTAR analysis. The list of
available tasks can be found in section 4.1 of the CVIS User Guide [https://camet.adventium.com/CAMET/CAMET/
wikis/tool_pages/continuous-virtual-integration]. The steps to include in your workflow are the same as those that
you went through in the section called “Lesson 4. Utilization Analysis” and the section called “Lesson 5. Report
Generation”; create an instance, run utilization analysis on the instance, and generate formatted reports. The example
build.xml script shown in Example 35 is split into two sections called targets. The first target, clean, removes the
instance and analysis directories and refreshes your Eclipse workspace. The second target, analysis, generates
an instance model, performs FASTAR utilization analysis on that instance, generates the example templates, and
creates the HTML and CSV reports. Tasks are called by name and each task has different requirements for user declared
inputs and outputs. Check section 4.1 of the CVIS user guide for the requirements of each Ant task. Copy the full
example build script and paste it into your new build.xml file. Verfy that the file and directory names in each Ant
task are correct for your Basswood project. Run the script by right clicking the build.xml and select Run As>Ant
Build.... Make sure to select the option Run in the same JRE as workspace under the JRE tab of the menu window
before clicking Run. The Console view at the bottom of your Eclipse window will display the progress of your Ant
build. If the Console is not open, go to Window>Show View>Console to open it. A successful Ant build will return
"BUILD SUCCESSFUL" at the end of the console output (see Example 36).

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration

Integrated AADL Analysis

Copyright 2018 Adventium Labs 37

Example 36. Sample Ant Run Console Output

Lesson 6. Schedulability Analysis

Prerequisites
• Complete the section called “Lesson 4. Utilization Analysis” and have your AADL Basswood model with utilization

properties in your OSATE workspace

• Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-
wood training example running on RTEMS

• Install the FASTAR Tool Suite prerequisite tools (see the section called “Additional FACE and AADL Resources”)

Summary
In this lesson, you will learn how to:

1. Add thread WCET details to the Basswood AADL model

2. Add schedulability analysis properties to the Basswood AADL model

3. Run FASTAR scheduleability analysis on the Basswood AADL model

4. Demonstrate a schedulability failure on the Basswood AADL model

5. Recreate the scheduling failure using Basswood on RTEMS

Adding Timing Properties to the AADL Basswood Model
Switch back to the AADL Perspective. Click the Open Perspective icon in the top right of the OSATE window. Select
AADL and click Open.Return to the Basswood AADL model you used in the section called “Lesson 4. Utilization
Analysis” and open basswood_schedule.aadl. Find the thread group property declarations in the subcom-
ponents of rtems.impl. Each thread group already has a period property declaration. Edit the periods so each
thread has a period of 1000 milliseconds. Add deadline properties to each of the thread groups that are equal
to their periods. Assign a priority to each thread group such that ATCManager thread group has the highest pri-
ority and AirConfig has the lowest priority. The FASTAR MAST analysis tool follows the ARINC653 definition of
priorities where higher numbers indicate higher priorities. Finally, assign a 200 ms Compute_Execution_Time

Integrated AADL Analysis

Copyright 2018 Adventium Labs 38

property to each thread group as shown in Example 37. Note that you are using properties on the thread groups to
describe the behavior of the thread within it. To clarify to the MAST analysis tool that the properties refer to a par-
ticular thread, add an applies to clause after each property declaration as shown in Example 37. These property
declarations will now override any that are applied to the threads themselves (e.g. the periods that were generated
when the Basswood model was initially translated).

44 process implementation rtems.impl
45 subcomponents
46 ATCManager: thread group basswood_PCS::ATCManager.impl{
47 priority => 10 applies to ATCThread;
48 period => 1000ms applies to ATCThread;
49 deadline => 1000ms applies to ATCThread;
50 Compute_Execution_Time => 200ms .. 200ms applies to ATCThread;
51 };
52 EGI: thread group basswood_PSSS::EGI.impl{
53 priority => 5 applies to EGIThread;
54 period => 1000ms applies to EGIThread;
55 deadline => 1000ms applies to EGIThread;
56 Compute_Execution_Time => 200ms .. 200ms applies to egiThread;
57 };
58 AirConfig: thread group basswood_PSSS::AirConfigUoP.impl{
59 priority => 1 applies to airConfThread;
60 period => 1000ms applies to airConfThread;
61 deadline =>1000ms applies to airConfThread;
62 Compute_Execution_Time => 200ms .. 200ms applies to airConfThread;
63 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_schedule.aadl]

Example 37. Update period and add deadline and execution times

You have now configured your Basswood system with an execution schedule for the qemu_x86 processor. This
schedule configuration is going to serve as your successful shedulability analysis example. Later you will adjust these
values to show what happens when you configure your schedule incorrectly and overload the processor.

Navigate back to qemu_x86.impl in the file basswood_schedule.aadl. Recall from the section called
“Adding Utilization Properties to the Basswood Model”, that the processor already has some scheduling properties
declared (see Example 38).

74 processor implementation qemu_x86.impl
75 properties
76 Clock_Period => 10 ms;
77 FASTAR::Packet_Header_Size => 100 Bytes .. 100 Bytes;
78 Transmission_Time => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];
79 end qemu_x86.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L4_basswood/basswood_schedule.aadl]

Example 38. Existing scheduling properties

The Clock_Period property establishes the time it takes the processor to perform any given instruction. In the case
of Basswood, the Qemu processor has a clock period of 10 ms. The Packet_Header_Size property states that

Integrated AADL Analysis

Copyright 2018 Adventium Labs 39

the processor adds a 100 Byte header to any data packet it processes. The final property is Transmission_Time,
which states that communications are transmitted at a speed of 1 microsecond per Byte. Add two additional scheduling
property declarations to this processor: Scheduling_Protocol and Priority_Range. Priority_Range
declares which thread priority levels are handled by a processor. Give qemu_x86.impl a priority range of 1 - 20,
which indicates that qemu_x86.impl is capable of processing all of the threads and thread groups in the Basswood
software model. For Scheduling_Protocol, declare that qemu_x86.impl is using rate-monotonic scheduling
(RMS) as the tasks in Basswood have static priorities (see Example 39).

120 processor implementation qemu_x86.impl
121 properties
122 Scheduling_Protocol => (RMS);
123 Priority_Range => 1 .. 20;
124 Clock_Period => 10 ms;
125 FASTAR::Packet_Header_Size => 100 Bytes .. 100 Bytes;
126 Transmission_Time => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];
127 end qemu_x86.impl;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_schedule.aadl]

Example 39. Add scheduling protocol and priority range

Performing Schedulability Analysis on Basswood
Now that you have added scheduling and worst case execution time (WCET) properties to your AADL Bass-
wood, you can add a FASTAR_Analysis property declaration to Basswood_Integration_Model.impl in
basswood_integration_model.aadl. This property declaration tells the FASTAR tool which analysis tool
to use on your model. For Basswood, you will use MAST analysis. The system connecitons are bound to the virtual bus
named queue. This declares that all threads share the same queue. Finally, declare that all threads use a Periodic
Dispatch_Protocol as shown in Example 40.

60 properties
61 Actual_Processor_Binding => (reference (x86)) applies to proc;
62 Actual_Memory_Binding => (reference (x86)) applies to proc;
63 Actual_Connection_Binding => (reference(queue)) applies to connection0,
64 connection1, connection2, connection3;
65 Dispatch_Protocol => Periodic applies to proc.AirConfig.airConfThread,
66 proc.ATCManager.ATCThread, proc.EGI.egiThread;
67 FASTAR::Analysis => MAST;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_integration_model.aadl]

Example 40. Add FASTAR Analysis and Periodic Dispatch Protocol

You now have sufficient detail on your Basswood model to yield analysis results from the FASTAR schedulability
tool. Create an instance model of Basswood_Integration_Model.impl by right clicking it in the Outline
view and selecting Instantiate. Locate the instance model in the AADL Navigator view and make sure it is selected.
Run the FASTAR schedulability analysis tool by going to Model Analysis>Analyze Schedulability. The tool will
generate warnings in the Problems view indicating that your have some components and connections bound to virtual
components with no hardware binding (see Figure 20). These warnings are indicating that your queue component
is not bound to a hardware resource. This is fine for now, as the tool will still perform the schedulability analysis
covered by this training.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 40

Figure 20. FASTAR warnings about missing hardware bindings

Navigate to the reports directory and open the CSV schedulability analysis report (see Figure 21). the section called
“Interpreting the Schedulability Analysis Report” explains the contents of the FASTAR schedulability report.

Figure 21. Schedulability report with a Successful Result

Interpreting the Schedulability Analysis Report

The top sections of the report are the MAST and BlackBox resource analysis results. The BlackBox utilization report
should be empty as the only components of the system that are bound to a "black box" resource are the transporter
segments that do not have any utilization or schedulability properties tied to them. For Basswood in this configuration,
the MAST utilization of the resource x86 is 0.6 or 60% (see Figure 22). Recall that the utilization analysis tool from
the section called “Lesson 4. Utilization Analysis” reported a utilization of 0.45 or 45%. The schedulability tool takes
into account the dynamic behavior of the system when computing the processor utilization, thus the discrepency in
the result from the utilization analysis tool.

Integrated AADL Analysis

Copyright 2018 Adventium Labs 41

Figure 22. Processor Utilization Report

The next section is the MAST task analysis result that computes worst case execution times for each of the threads
against the other tasks and their specified deadlines. Recall that you gave each thread a period and a deadline of
1 second. With three threads, each with a 200 ms execution time, you expect that all three threads will meet their
deadlines with the third thread being completed by 600ms. The analysis tool report shows that this is, indeed, the case
(see Figure 23).

Figure 23. Report Confirming that Deadlines are Met

The final section of the report is the FASTAR Flow Analysis (see Figure 24). This is similar to the standard OSATE
latency analysis tool you used in the section called “Lesson 2. Modifying the BALSA AADL Model”. The FASTAR
flow analysis tool takes into account the dynamic behaviors of the thread executions as well as the Latency property
declarations. It includes the latency of each segment of the flow in the first column as well as the running total of the
flow in the third column. The total flow latency is compared to the declared budget found in the Allowed column.
Observe that the total flow latency of 65 ms is within the set limit of 500 ms for both end to end flows.

Figure 24. Flow latency within budget

Demonstrating a Schedulability Analysis Failure
Now that you have an example of a schedulability analysis success, you are going to build a schedule that will
overload the processor. To avoid overwriting your previous success example, build a second implementation of the
rtems process in the basswood_schedule.aadl file and name it rtems.fail. Copy and paste the contents
of rtems.impl into rtems.fail (see Example 41).

78 process implementation rtems.fail

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_schedule.aadl]

Example 41. Create an implementation that fails

Integrated AADL Analysis

Copyright 2018 Adventium Labs 42

Navigate to the subcomponents of rtems.fail and alter the properties of the thread groups as shown in Example 42.

81 subcomponents
82 ATCManager: thread group basswood_PCS::ATCManager.impl{
83 priority => 10 applies to ATCThread;
84 period => 100 ms applies to ATCThread;
85 deadline => 100 ms applies to ATCThread;
86
87 Compute_Execution_Time => 50ms .. 50ms applies to ATCThread;
88 };
89 EGI: thread group basswood_PSSS::EGI.impl{
90 priority => 5 applies to EGIThread;
91 period => 200ms applies to EGIThread;
92 deadline => 200ms applies to EGIThread;
93 Compute_Execution_Time => 100ms .. 100ms applies to egiThread;
94 };
95 AirConfig: thread group basswood_PSSS::AirConfigUoP.impl{
96 priority => 1 applies to AirConfThread;
97 period => 1000ms applies to AirConfThread;
98 deadline =>1000ms applies to AirConfThread;
99 Compute_Execution_Time => 100ms .. 100ms applies to airConfThread;
100 };

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_schedule.aadl]

Example 42. Alter properties to fail

This configuration should cause the threads to miss their deadlines since the lower priority AirConfig thread will
be preempted by the higher priority threads when they dispatch at faster rates. In Figure 25, we illustrate the failure
scenario you have just set up using your AADL model.

Figure 25. A configuration where threads miss their deadlines

Integrated AADL Analysis

Copyright 2018 Adventium Labs 43

Recall that you declared that the deadlines of each of the threads are equal to their periods. The red line in the diagram
indicates the deadline of AirConfig.

Next create a copy of Basswood_Integration_Model.impl in basswood_integration_model.aadl
and rename it Basswood_Integration_Model.fail. Change the proc subcomponent from rtems.impl
to your newly created implementation rtems.fail (see Example 43).

72 system implementation Basswood_Integration_Model.fail
73 subcomponents
74 proc: process basswood_schedule::rtems.fail;

From [/cygdrive/c/Repos/DO3/BAT/training_materials/L6_basswood/basswood_integration_model.aadl]

Example 43. Update to the Proc that will Fail

Generate an instance model of this new system implementation by selecting
Basswood_Integration_Model.fail in the Outline view, right clicking, and selecting the menu option In-
stantiate. Select the newly generated instance model of basswood_integration_model.fail in the AADL
Navigator view and go to Model Analysis>Analyze Schedulability. The tool will generate the same output report files
as earlier, but it will also generate 4 errors on the model as shown in the Problems view (see Figure 26).

Figure 26. FASTAR Errors

The errors generated by the tool indicate that the threads are missing their deadlines and the processor is overloaded.
Open the CSV report and note that it shows the same error outputs as the console (see Figure 27).

Figure 27. Schedulability report with errors

You have now successfully generated a model of a priority inversion scenario. Next you will demonstrate a priority
inversion using Basswood on RTEMS.

Executing the Priority Inversion in RTEMS
You are ready to see the priority inversion example execute in the RTEMS run-time environment. Refer to the section
called “Lesson 3. Executing a BALSA-Derived Demonstration System” to recall how to generate source code for the

Integrated AADL Analysis

Copyright 2018 Adventium Labs 44

RTEMS run-time environment and how to configure and start the RTEMS VirtualBox virtual machine. To run the
example, perform the following steps:

• Generate the source code from the AADL model, which results in a new schedule.c file.

• Start and login to the RTEMS VirtualBox virtual machine, and copy the schedule.c to the ~/develop-
ment/basswood/autogen/Basswood directory (overwrite the old copy if necessary).

• Bring up a command line terminal, and in the same directory, open the utilization.c in an editor. Set each
*_demand to zero. This will set the execution time of each component in the system to equal their worst-case
execution time by default.

• Return to the ~/development/basswood directory, and build the system by typing

 $ make main

• When the build is complete, you can invoke a simple script to execute the example model within the RTEMS run-
time environment.

 $./run

• The EGI and AirConfig components will periodically send simulated aircraft and position data to the ATC com-
ponent. The ATC component receives the data and simply prints out the results as it receives it. The results are
streamed to the terminal output. The system is designed to terminate automatically after 10 sets of message iterations
between the components, and the number of missed ATC periods is listed at the end. The RTEMS environment will
then re-initialize and restart the system. You can stop the run by pressing Control-c.

	Integrated AADL Analysis
	Table of Contents
	Overview
	Additional FACE and AADL Resources
	Setup
	Lesson 1. The BALSA Model
	Prerequisites
	Summary
	Navigating in OSATE
	What is BALSA?
	Installing the FACE Data Model to AADL Translator
	Using the FACE Data Model to AADL Translator
	Exploring the BALSA AADL model
	Using OSATE tools to Create and View Diagrams

	Lesson 2. Modifying the BALSA AADL Model
	Prerequisites
	Summary
	Introduction to Data Flows in AADL
	Adding Threads to the AADL BALSA Model
	Adding End to End Flows to the AADL BALSA Model
	Adding Properties to an AADL Model
	Performing Latency Analysis on the AADL BALSA Model
	Optional: Packaging the Transporters into a single TSS Example

	Lesson 3. Executing a BALSA-Derived Demonstration System
	Prerequisites
	Summary
	Introduction to Basswood
	Configuring Basswood Real-Time Attributes
	Configuring the Real-Time Execution Environment
	Generating Source Code and Running the Real-Time Application

	Lesson 4. Utilization Analysis
	Prerequisites
	Summary
	Adding Utilization Properties to the Basswood Model
	Performing Utilization Analysis on the Basswood Model
	Utilization Success of Basswood on RTEMS
	Utilization Failure of Basswood on RTEMS
	Demonstrate a Utilization Failure in AADL

	Lesson 5. Report Generation
	Prerequisites
	Summary
	Creating an Example Report Template
	Generating a Formatted FASTAR Utilization Report
	Optional: Automating Analysis and Report Generation using Ant

	Lesson 6. Schedulability Analysis
	Prerequisites
	Summary
	Adding Timing Properties to the AADL Basswood Model
	Performing Schedulability Analysis on Basswood
	Interpreting the Schedulability Analysis Report
	Demonstrating a Schedulability Analysis Failure
	Executing the Priority Inversion in RTEMS

