Integrated AADL Analysis

Tutorials (Ver. 0.1.0 Rev. 10-Sep-2018)

Distribution Statement A: Approved for public release; distribution unlimited. AMRDEC ADD — Eustis
Contract Number W911W6-17-D-0003 Delivery Order 3

This material is based upon work supported by the U.S. Army Research Development and Engi-
neering Command (RDECOM), Aviation Missile Research Development and Engineering Center
(AMRDEC), Aviation Development Directorate (ADD) under contract no. W911W6-17-D-0003.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the U.S. Army RDECOM or AM-
RDEC.

Copyright 2018 Adventium Labs 1

Integrated AADL Analysis

Copyright 2018 Adventium Labs 2

Integrated AADL Analysis

Table of Contents

OVEIVIBIV .ottt ettt ettt ettt ettt oot e e b oo et e b e e et e b e e et e et et e e e e 4
Additional FACE and AADL RESOUITESiiiiiiieiiiii ettt ettt et e et e e enb e eeneas 4
RS (0] o PRSPPI 4
Lesson 1. The BALSA IMOUE!ottt ettt e ettt e et ab e e e eea s 5
PrEIEOUISITES ... ieete ettt et e et e et e et et et et e e e 5
SUMIMIBIY ettt et et et ettt e et et et e e et et e e e e et n et e e et e e e eaa s 5
NaVIgating N OSATE ...t ettt ettt ettt et e en e e e e e eaaans 5
V8L 1S B A L S 2 ettt ettt ettt et e e s 6
Installing the FACE Data Model t0 AADL Transl@torc.uuuiiiiiiiieiiii e 6
Using the FACE Data Model t0 AADL Translalorcc.uuiiiiiiiieiiii e 6
Exploring the BALSA AADL MOUE ..ottt 7
Using OSATE tools to Create and VIew DIiagramsccuuuieiiiiieeiiiiie e eeii et e e eeeni e e 8
Lesson 2. Modifying the BALSA AADL MOE ... oot 9
PrEIEOUISITES ... ieete ettt et e et e et e et et et et e e e 9
SUMIMIBIY ettt et et et ettt e et et et e e et et e e e e et n et e e et e e e eaa s 9
Introduction to Data FIOWS iN AADL ...ttt et e e e eees 9
Adding Threads to the AADL BALSA MOEiiiiiiiieei e 10
Adding End to End Flows to the AADL BALSA MOcooiiiiiiiiiiiieeei et 15
Adding Properties to an AADL MOGEiiiiii et 16
Performing Latency Analysis on the AADL BALSA MOElcoooiiiiiiiiiiii e 17
Optional: Packaging the Transportersinto asingle TSS EXampleoooiiiiiiiiieiiiiicce e 19
Lesson 3. Executing a BALSA-Derived Demonstration SYSEEMcoouuuieiiiiiieiiiiieeeei e eeeeens 23
(= (= o[V 1 L= PP PPPPTT 23
SUMIMIBIY ettt ettt ettt et e e e et e e e et et et et e e et et et n et et et e e e 23
INErOAUCEION T0 BESSIWOOMveieieiiie ettt ettt ettt e e et e e e et e e e e nna s 23
Configuring Basswood Real-Time AIDULESiiiiiiiieei e 24
Configuring the Real-Time EXecution ENVIFONMENTiiiiiiiiiiiiiii e 25
Generating Source Code and Running the Real-Time Applicationcoeviiieiiiiiiieiiiie e, 25
Lesson 4. ULHHIZaEON ANBIYSIS ...ttt ettt ettt e et e e e e e enaans 28
(= (= o[V 1 L= PP PPPPTT 28
SUMIMIBIY ettt ettt et e et et et e ettt et e e et et e e e et et n et et e e e e s 29
Adding Utilization Properties to the Basswood MOdEliiiiiiiiiiiiiii e 29
Performing Utilization Analysis on the Basswood Modeloviiiiiiiiiiiiiiii e 31
Utilization Success of Basswood 0N RTEMS ... 32
Utilization Failure of Basswood 0n RTEMS ...ttt 33
Demonstrate a Utilization Failure in AADLoiiiiiiiiii e 33
L eSSON 5. REPOIT GENEIGHIONiieiiiieeeeii ettt ettt et e et e e e e et e et et e e eeba e e ennens 34
(= (= o[V 1 L= PP PP T PPPPTT 34
SUMIMIBIY ettt ettt et e et et et e ettt et e e et et e e e et et n et et e e e e s 34
Creating an Example RepOrt TEMPIBIEuuiiiiii et e e e eenees 34
Generating a Formatted FASTAR Utilization REPOIc.uuiiiiiiiiiiiiiii e 35
Optional: Automating Analysis and Report Generation USING ANoouueueiiiiiieiiiieeeei e 35
Lesson 6. SChedulability ANIYSISu. ittt et ettt ettt e e e n e eene 37
(= (= o[V 1 L= PP PP T PPPPTT 37
SUMIMIBIY ettt ettt et e et et et e ettt et e e et et e e e et et n et et e e e e s 37
Adding Timing Properties to the AADL Basswood MOElooviiiiiiiiiiiiii e 37
Performing Schedulability Analysis 0N BaSSWOOUcoeeuuuiiiiiiieieii e 39
Interpreting the Schedulability AnalySiS REPOIcoouutiiiiii e e 40
Demonstrating a Schedulability ANalySiS FailUrec.uuiiiiiiiiiii e 41
Executing the Priority InVersion in RTEMS ... e 43

Copyright 2018 Adventium Labs 3

Integrated AADL Analysis

Overview

Thisguide provides a set of tutorialstouching on avariety of the Architecture Analysisand Design Language (AADL)
analyses. Thisguideis part of atraining package that includes features of AADL and the Future Airborne Capability
Environment (FACE) Technical Standard. The examples in this training package are based on the Basic Avionics
Lightweight Source Archetype (BALSA) example provided by the FACE™ Consortium and referencean AADL mod-
el of BALSA included in the training package. This guide uses the Open Source AADL Tool Environment (OSATE)
asits development environment for AADL modeling.

For updates to this document and related information, see Tools, Training, and Reference Materials for the FACE
Technical Standard [https.//www.adventiumlabs.com/camet/face]

Additional FACE and AADL Resources

» Additional FACE resources can be found at: FACE Documents [http://www.opengroup.org/face/information]
 Additional information about BAL SA can befound at: BAL SA Overview [https://publications.opengroup.org/d207]
 Additional information about OSATE can be found at: About OSATE [http://osate.org/about-osate.html]

 Additional information about Real-Time Executive for Multiprocessor Systems (RTEMS) can befound at: RTEMS
Documentation [https://docs.rtems.org/branches/master/]

 Additional resourcesfor the combined use of AADL and the FACE(TM) Technical Standard can befound at: Tools,
Training, and Reference Materials for the FACE Technical Standard [https://adventiumlabs.com/CAMET/FACE]

» Additional AADL resources for CAMET subscribers can be found at: AADL Resources [https://
camet.adventium.com/CAMET/CAMET /wikis/support/aadl-resources)

» Framework for Analysis of Schedulability, Timing and Resources (FASTAR) tool suite plugin and documentation
(for CAMET subscribers): FASTAR [https.//camet.adventium.com/CAMET/CAMET/wikig'tool _pagesFASTAR]

» Continuous Virtual Integration Toolkit (CVIT) tool documentation (for CAMET subscribers): CVIT [https://
camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration]

Setup

» OSATEIisavailablefor download here; Latest stable OSATE version [https://osate-build.sei.cmu.edu/download/os-
ate/stable/latest/products/] (this guide was tested with version 2.3.4)

* OSATE ingtalation instructions can be found here: OSATE Installation [http://osate.org/download-and-
install.html#new-installation]

Use these steps to add the prerequisite models to your OSATE workspace
1. Usetheinstalation instructions from the OSATE site to download and install OSATE.
2. Download the prerequisite model archivecanet - t r ai ni ng. zi p.

In addition to the models required to perform the training, this archive contains a "solution” project for each lesson
for your reference. The solution projects are located int r ai ni ng_nat eri al s directory and are named for their
relevent lesson number.

Use these stepsto install the Basswood virtual machine on your workstation

Copyright 2018 Adventium Labs 4

https://www.adventiumlabs.com/camet/face
https://www.adventiumlabs.com/camet/face
https://www.adventiumlabs.com/camet/face
http://www.opengroup.org/face/information
http://www.opengroup.org/face/information
https://publications.opengroup.org/d207
https://publications.opengroup.org/d207
http://osate.org/about-osate.html
http://osate.org/about-osate.html
https://docs.rtems.org/branches/master/
https://docs.rtems.org/branches/master/
https://docs.rtems.org/branches/master/
https://adventiumlabs.com/CAMET/FACE
https://adventiumlabs.com/CAMET/FACE
https://adventiumlabs.com/CAMET/FACE
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/support/aadl-resources
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
https://osate-build.sei.cmu.edu/download/osate/stable/latest/products/
http://osate.org/download-and-install.html#new-installation
http://osate.org/download-and-install.html#new-installation
http://osate.org/download-and-install.html#new-installation

Integrated AADL Analysis

1. Basswood runs on avirtual machine. Download and install VirtuaBox (v5.2 or higher) from here: VirtualBox
[https://www.virtualbox.org/]

2. Decompress the Basswood VM directory.

3. Inthe VirtuaBox Manager window, go to Machine and select Add.... Navigate to the Basswood VM image
Basswood. vbox and click Open.

4. The Basswood VM will be listed in the VirtualBox Manager window. Select it and click Settings to open the
settings for Basswood.

5. IntheSettingswindow under General goto Advanced and make sure bidirectional isselected for Shared Clipboard
and Drag'n'Drop. Click Ok. Thiswill allow you to easily move files between your workstation and the Basswood
virtual machine.

6. Click Start to boot up Basswood.

7. Within the Basswood virtual machine you will be prompted to log in. The username and passwood are both

basswood.

Lesson 1. The BALSA Model

Prerequisites

» Download and unzip the latest stable release of OSATE on your workstation (see the section called “ Setup”)

» Download the prerequisite models on your workstation (see the section called “ Setup”)

» Haveabasic understanding of AADL and BAL SA (seethesection called “ Additional FACE and AADL Resources’)

Summary

In this section, you will learn how to:

1. Open and navigatein OSATE
2. Install the FACE Data Model to AADL Trandlator

3. Usethe FACE Data Model to AADL Trandlator

4. Explorethe BALSA AADL model using OSATE

5

. Use OSATE toolsto create and edit a diagram of your BALSA model

Navigating in OSATE

Open OSATE by clicking on Osate.exe in the unzipped OSATE archive downloaded as a prerequisite for thistraining
(seethe section called “ Setup”). OSATE isan open-source Eclipse-based AADL editor and will be used for the AADL
work in this training. OSATE has a number of possible views that are useful for navigating your AADL workspace.
The left side of the window isthe AADL Navigator view, which lists all of the projects in your workspace. The far
right side of the screen is the Outline view, which displays all of the elementsin the model you have open currently.
If these toolbars are missing go to Window>Show View and select Outline and Project Explorer.

1

Create anew project by going to File>SNew>AADL Project

Copyright 2018 Adventium Labs 5

https://www.virtualbox.org/
https://www.virtualbox.org/

Integrated AADL Analysis

2. Nameit BALSA and click Finish

3. Locateyour bal sa. f ace fileinthemodel archive(/ nodel s/ bal sa. f ace) and add it to your new BALSA
project by dragging it into the BAL SA project in the AADL Navigator view.

You canopenthebal sa. f ace fileby doubleclickingitinthe AADL Navigator. The center portion of your OSATE
window is where the contents of your models are displayed. Since the bal sa. f ace fileis not written in AADL it
isdisplayed as a"read-only" system hierarchy.

What is BALSA?

Basic Avionics Lightweight Source Archetype (BALSA) isaworking example of a system of FACE-aigned compo-
nents. It is asimple avionics control system with four units of portability (UoPs). BALSA has three platform specific
service segments (PSSS): an Embedded GPS/INS (EGI) controller that outputs position and atitude, an Aircraft Con-
fig service that outputs callsign and aircraft ID, and an Automatic Dependent Surveillance-Broadcast (ADS-B) com-
munication output component. There is a portable components segment (PCS) called the ATC manager that combines
the outputs of the EGI and Aircraft Config into information for the ADS-B component. The transport service segment
(TSS) routes messages between the UoPs. Y ou will need toinstall the FACE DataModel to AADL Translator OSATE
pluginto translate the bal sa. f ace fileintoits AADL equivalent.

Installing the FACE Data Model to AADL Translator

You can install supplemental components, such as the FACE Data Model to AADL Trandator, from within OSATE
itself by following these steps.

1. Select Help>Install Additional OSATE Components.

2. Sdlect FACE DataModel to AADL Translator in the popup window.

3. Click Finish toinitiate the installation.

4. Anlnstall dialog will appear with the Translator already selected. Click Next to continue.
5. After reviewing the installation details, click Next again.

6. Accept theterms of the license agreement, then click Finish to complete the installation.

7. A security dialog will warn that you are attempting to install software with unsigned content. Click on Install
anyway to continue.

8. A new dialog will instruct you to restart OSATE for your software changes to take effect. Unless you have other
tasks to complete first, click on Restart now.

9. After OSATE restarts, you can verify a correct installation by selecting Help>About OSATE2, click on Installa
tion Details, and confirm that FACE Data Model to AADL Trandlator appearsin the list of Installed Software.

Using the FACE Data Model to AADL Translator

Now that the trandator isinstalled, you can useit to translate the bal sa. f ace fileinto AADL. To usethetrandator,
navigatetothebal sa. f ace fileinthe AADL Navigator toolbar and right click. Select the option translateto AADL
from the menu. The trandlator will produce a folder in your BALSA project named nodel - gen that contains four
AADL files (see Figure 1). You will learn more about the contents of these filesin the next section. If your generated
model is filled with warnings or errors try re-building your model by going to Project>Clean... This will take a few
seconds will resolve any errorsin your model.

Copyright 2018 Adventium Labs 6

Integrated AADL Analysis

? AADL Navigator # [AADL Diagrams
4 % BALSA

4 = model-gen
| balsa_data_model.aadl
= balsa_integration_model.aad|
=| balsa_PCS.aadl|
=| balsa_P55S.aadl|
k4 balsa.face
=k Plugin_Contributions

Figurel. Translated BAL SA Model Shown in the OSATE AADL Navigator
Exploring the BALSA AADL model

In the section called “Using the FACE Data Model to AADL Translator” you generated a BALSA model in AADL
using the FACE DataModel to AADL Trandator plugin. The BALSA UoPsare modeled asthread groups each intheir
own process. Y ou are going to add properties and data flows to this model in the section called “Lesson 2. Modifying
the BALSA AADL Model” to perform latency analysis.

The autogenerated BALSA AADL model is organized into four files. bal sa_data nodel . aadl ,
bal sa_i ntegrati on_nodel . aadl ,bal sa_PCS. aadl ,andbal sa_PSSS. aadl .

bal sa_dat a_nodel . aadl containsthe BALSA datatype declarations and implementations. Each data type dec-
laration has FA CE-specific properties that correspond to its FACE realization tier and its UUID. bal sa_PCS. aadl
and bal sa_PSSS. aadl containthet hread group,t hr ead, and pr ocess declarations and implementations
for the four BALSA UoPs; ATCManager , ADSB, Ai r Conf g, and EG . Properties on the UoPs such as output rates
and UUIDsthat are defined inthe bal sa. f ace file are automatically populated in the autogenerated AADL model.
Eacht hread gr oup contains asingle empty thread with a period of 1 second by default (see Example 1).

36 thread group inplenentati on ATCMVanager. i npl
37 subcomponent s

38 threadO: thread {

39 Period => 1 sec;

40 }i

41 end ATCManager.inmpl;

From [bal sa_PCS. aadl]

Example 1. A Thread Declaration Generated by the FACE Data Model to AADL
Transator

bal sa_i ntegrati on_nbdel . aadl contains the top-level integrated system with the relevant attributes
from the bal sa. face model. The bal sa_i ntegrati on_nodel . aadl system implementation named
BALSA | ntegration_Mdel . i npl will beusedfor al of the analysis performed during thistraining. This sys-
tem implementation has eight subcomponents; four UoPs, a bus named UDP aswell asthree abstract t r ansport er

components. Theset r anspor t er components are the equivalent of the FACE notion of aTSS. The trandlator gen-
eratesat r ansport er component for each interface between UoPs. Theset r anspor t er s can be packaged into
one or more abstract TSS components by the user depending on the configuration of their specific system. BALSA
traditionally has one TSS component. However, the packaging of thet r anspor t er s isnot specificaly relevant to

Copyright 2018 Adventium Labs 7

Integrated AADL Analysis

the types of analysis covered in thistutorial, so it will not be included in the training content. There will be an optional
tutorial at the end of the section called “Lesson 2. Modifying the BALSA AADL Model” with an example of how to
package the TSS, but examplesin later lessons will not include it. Next you will use the OSATE graphical editor to
generate adiagram of your AADL BALSA model similar to Figure 2.

BALSA_Integration_Model.impl*

Instance_of_Air_Conf_UoP* / / Instance_of_EGI_UoP*
AirConfig_to_ATC_port EGI_to_ATC_port
Template_view_from_Aircraft_Config_transporter* Template_view_from_EGI_Data_transporter*
output input0 inputy outpui

> =\

~ *

¢ UpP 5
Instance_of_ATC_UoP*
ATC_From_AirConfig_Port ATC_From_EGI_Port
| L J

] ATC_To_ADSB_Port I [

Template_view_from_ATC_Data_transporter*
input0 output
. ~\
Instance_of_ADSB_UoP*
ADSB_From_ATCManager_Port
e

Figure 2. AADL Graphical Model of the BAL SA Architecture

Using OSATE tools to Create and View Diagrams

OSATE has the ahility to automatically generate diagrams of component implementations from AADL code. AADL
diagrams serve as a useful visual representation of the system defined in the code.

To generate a diagram of the BALSA system:

1. Openthebal sa_i ntegration_nodel . aadl fileby doubleclickingitinthe AADL Navigator.

Copyright 2018 Adventium Labs 8

Integrated AADL Analysis

2. Make surethat you have the Outline view open (see the section called “Navigating in OSATE") and navigate to
the BALSA | nt egrati on_Model . i npl system implementation.

3. Right click the system implementation and choose Create Diagram...
4. Inthe opened window, name the diagram BALSA_Aut ogen, select Structure Diagram and click OK.

Y our diagram should now be populated with your integrated BALSA system (see Figure 3).

. BALSA_Integration_Model.impl"
>

Instance_of_EGI_UoP*] | Template_view_from_EGI Data_transporter* | [Instance_of_ATC_UoP* | | Template_view_from_ATC_Data_transporter* | i Instance_of_ADSB_UoP*
EGLto ATC port i e | ATC_From_EGI_Port ATC_To_ADSB_Port| | input0 output | 'ADSB_From_ATCManager_Port
¥ o

o Wy To.ADS8 P

Instance_of_Air_Conf_UoP*] | Template_view_from_Aircraft_Config_transporter* | ATC_From_AirConfig_Port g
‘AirConfig_to_ATC_port| {0]
[

Figure 3. AADL BAL SA Architecture Diagram after Editing

AADL Diagrams are generated in a directory named di agr ans. Diagrams can be edited, saved, and exported as
images. Change the sizes and locations of the diagram elements as necessary by clicking and dragging model elements
(see Figure 3). For more information about AADL diagrams go to Help>Help Contents>OSATE Graphical Editor
Documentation.

Lesson 2. Modifying the BALSA AADL Model

Prerequisites

» Completethe section called “Lesson 1. The BALSA Model” and have the translated AADL BALSA model in your
OSATE workspace

» Download and import the prerequisite model archivein your OSATE workspace (see the section called “ Setup”)

Summary

In this section, you will learn how to:

1. Add data flow specifications to the BALSA AADL model
2. Add propertiesto an AADL model

3. Add threadsto the AADL BALSA model

4. Add flow latency propertiesto an AADL model

5. Perform latency analysis on an AADL model

6. Optional: Package the transportersinto a TSS

Introduction to Data Flows in AADL

AADL requires the modeler to explicitly declare the path(s) through the system through which data travels. FI ows
arethe AADL representation of how information flowsthrough asystem. In AADL, there are four types of dataflows:
flow sinks,flow sources,flow paths,andend to end flows.A flow source denotes the
origin of adataflow and af| ow si nk denotes a data flow termination. A f | ow pat h defines the path through
a component that a data flow follows from input to output. End to end fl ows define the paths through the
system that information travels from a source component to a sink component. Like components, flows have both a
declaration as well as an implementation.

Copyright 2018 Adventium Labs 9

Integrated AADL Analysis

The AADL model you generated in the section called “Lesson 1. The BALSA Model” using the FACE DataModel to
AADL Trandator takes every UoP component port and generatesaf | ow si nk or f | ow sour ce for it depending
on the port direction. You will haveto add f | ow pat hs through thet r ansport er s aswell asthe ATC UoP to
buildtheend to end fl ows necessary for timing analysis. In the case of BALSA, you will define the paths
through the system that begininthe EG and Ai r Conf i g UoPs and terminate in the ADSB UoP.

Adding Threads to the AADL BALSA Model

Navigate to the ATCManager thread group declarationin bal sa_PCS. aadl . The thread declaration generated by
the trandator is empty (see Example 2).

36 thread group inplenentati on ATCVanager. i npl
37 subcomponent s

38 threadO: thread {

39 Period => 1 sec;

40 };

41 end ATCManager.inmpl;

From [bal sa_PCS. aadl]

Example 2. Empty Thread Declaration Generated by the FACE Data M odel to AADL
Trandator

Now compare it to the thread execut abl e_t hr ead in BALSA Sof t war e. aadl inthe BALSA Sof t war e
prerequisite project. Thisthread hasinput and output dataportsaswell asa Conput e_Execut i on_Ti ne property
declaration (see Example 3).

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_mat eri al s/ BALSA Sof t war e/ BALSA Sof t war e. aadl]

Example 3. A Thread with Wor st Case Execution Time Specified

Move the BALSA Software.aadl model file (located in the prerequisite model archive un-
der /training_materials/BALSA Software) into your BALSA project by dragging it in-
to the nodel-gen folder. Go back to ATCManager in balsa_PCS.aadl and add
BALSA Sof tware: : execut abl e_t hread. i npl for the thread name in the subconponent s declaration
(see Example 4). Addwi t h BALSA_Sof t war e; at the top of bal sa_PCS. aadl to get rid of the model error
that appears.

50 thread group inplenentati on ATCVanager . i npl

51 subconponent s

52 t hreadO: thread BALSA Software::executabl e_thread.inpl{
53 Period => 1 sec;

54 }s

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PCS. aadl]

Example 4. ATCManager Thread Group with a Thread | mplementation

Now that the thread declaration is no longer empty, add connect i ons after the subconponent s of the ATC-
Manager thread group (see Example 5).

Copyright 2018 Adventium Labs 10

Integrated AADL Analysis

57 connecti ons

58 c0l1l: feature ATC From AirConfig Port -> threadO.input;
59 c02: feature ATC From EG _Port -> threadO.input;

60 c03: feature threadO. output -> ATC To_ ADSB Port;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PCS. aadl]

Example 5. Thread Connectionsin the ATCManager Thread Group

Add af | ows section above the pr operti es section in the thread group declaration and create flow declarations
between the inputs and the output (see Example 6).

37 flows

38 Ai r Config_To_ADSB path: flow path ATC From AirConfig_Port ->

39 ATC To_ADSB Port;

40 EG To ADSB path: flow path ATC From EJ Port -> ATC To ADSB Port;
41

42 properties

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 bal sa/ bal sa_PCS. aadl]

Example 6. Flow Declarationsfor ATCM anager

Create implementations of these flow pathsinthe ATCManager . i npl thread group implementation that go through
the thread (see Example 7). Note that the flow path implementations should have the same name as the declarations
you just created.

63 fl ows

64 AirConfig _To_ADSB path: flow path ATC From AirConfig_Port -> c0l1 -> threadO
65 -> c03 -> ATC To_ADSB Port;

66 EG To_ADSB path: flow path ATC From EG Port -> c02 -> thread0 -> c03 ->
67 ATC To_ADSB Port;

68

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PCS. aadl]

Example 7. Flow Implementationsfor ATCM anager

Replace the f | ow si nk and f| ow sour ce declarations in the process ATCVanager _process with f| ow
pat hs between the two input ports and the output port (see Example 8).

90 flows

91 Ai r Config_To_ADSB path: flow path ATC From AirConfig_Port ->

92 ATC To_ADSB Port;

93 EG _To_ADSB path: flow path ATC From EG _Port -> ATC To_ADSB Port;
94

95 end ATCManager process;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 bal sa/ bal sa_PCS. aadl]

Example 8. Flow Path Declarationsfor ATCM anager

Copyright 2018 Adventium Labs 11

Integrated AADL Analysis

Now navigate to the implementation of the ATCManager process and create implementations of the flow paths that
travel through the ATCManager thread group (see Example 9). Note that the flow path implementations should have
the same name as the declarations you just created. Y ou are adding detail to the original declaration now that more
detail about the system composition is available (i.e. subcomponents). The declaration defines the start and end point
of aflow, the implementation declares how it travels through the system.

105 fl ows

106 AirConfig To ADSB path: flow path ATC From Airconfig_Port ->

107 ATC From AirConfig_Port_connection -> ATCMVanager. Ai rConfi g _To ADSB path

108 -> ATC To_ADSB Port connection -> ATC To ADSB Port;

109

110 EG To ADSB path: flow path ATC From EA Port -> ATC From EG Port _connecti on
111 -> ATCwManager. EG _To_ADSB path -> ATC To ADSB Port_ connection ->

112 ATC To_ADSB_Port ;

113

114 end ATCWManager process. i npl;
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 _bal sa/ bal sa_PCS. aadl]

Example 9. Flow Path Implementationsfor ATCM anager

Repeat this process for bal sa_PSSS. aadl in the ADSB thread group declaration above the pr operti es (see
Example 10),

27 fl ows
28 flow sink: flow sink ADSB From ATCManager Port;
29

30 properties

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 bal sa/ bal sa_PSSS. aadl]

Example 10. ADSB Flow Declaration

ADSB. i npl thread group implementation (see Example 11),

41 thread group inplenentati on ADSB. i npl

42 subcomponent s

43 t hreadO: thread BALSA software::executable thread.inpl {

44 Period => 1 sec;

45 };

46 connections

47 c0l1l: feature ADSB _From ATCManager Port -> threadO.input;

48 fl ows

49 flow sink: flow sink ADSB From ATCMVanager Port -> c01 -> threado;
50 end ADSB.i mpl;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 bal sa/ bal sa_PSSS. aadl]

Example 11. Update the thread and declare thread flow implementationsfor ADSB

ADSB_pr ocess. i npl processimplementation (see Example 12),

Copyright 2018 Adventium Labs 12

Integrated AADL Analysis

63 process inplenentati on ADSB process. i npl

64 subconponent s

65 ADSB: thread group ADSB.i npl;

66 connecti ons

67 ADSB_Fr om ATCMvanager _Port _connection: port ADSB _From ATCManager Port ->

68 ADSB. ADSB_Fr om ATCManager _Port;

69 flows

70 ADSB_Fr om ATCVanager _Port _sink: flow sink ADSB_From ATCVanager Port ->
71 ADSB_Fr om ATCMVanager Port _connection -> ADSB. fl ow_si nk;

72 end ADSB_process.inml;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 12. Declare flowsfor the ADSB process

Ai r Conf i g thread group declaration (see Example 13),

83 fl ows

84 AirConfig to ATC port_source: flow source AirConfig to ATC port;
85

86 properties

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 13. Declare aflow for AirConfig

Ai r Config.inpl thread group implementation (see Example 14),

93 thread group inplenentation AirConfig.inpl

94 subconponent s

95 t hreadO: thread BALSA Sof tware:: executabl e_t hread{
96 Period => 1 sec;

97 b

98 connecti ons

99 c01: feature threadO. output -> AirConfig to_ ATC port;

100

101 fl ows

102 AirConfig to ATC port_source: flow source thread0 -> c0l1 ->
103 AirConfig_to_ATC port;

104 end AirConfig.inmpl;
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 14. Thread Flow Implementationsfor Air Config

A process provides memory space for thread groups and threads. The Ai r Conf i g_process. i npl process
implementation (see Example 15) provides memory space for the AirConfig thread group. Flows originating or termi-
nating in asubcomponent of aprocess must have an explicit flow segment defining how they enter and exit the process.

117 process inplenentation AirConfig_process.inpl

Copyright 2018 Adventium Labs 13

Integrated AADL Analysis

118 subconponent s

119 AirConfig: thread group AirConfig.inpl;

120 connecti ons

121 AirConfig to_ATC port_connection: port AirConfig.AirConfig to ATC port ->

122 AirConfig_to_ATC port;

123 fl ows

124 AirConfig to_ ATC port_source: flow source AirConfig.AirConfig to_ ATC port_source
125 -> AirConfig_to ATC port_connection -> AirConfig_to_ATC port;

126 end AirConfig_process.inpl;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 15. Flowsfor the Air Config Process

EQ thread group declaration above the pr operti es (see Example 16),

137 fl ows

138 EGA _to_ATC port_source: flow source EG _to_ATC port;
139

140 properties

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 16. Declare aflow for EGI

Ed . i npl thread group implementation (see Example 17),

147 thread group inplenentation EG.inmpl

148 subconponent s

149 t hreadO: thread BALSA Sof tware:: executabl e_t hread{

150 Period => 1 sec;

151 };

152 connecti ons

153 c01l: feature threadO.output -> EG _to ATC port;

154 fl ows

155 EGA to_ATC port_source: flow source thread0 -> c01 -> EG _to_ATC port;
156 end EQ.inpl;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 17. Thread Flow I mplementationsfor EGI

EQ process implementation (see Example 18),

169 process inplenentati on EG _process.inpl

170 subconponent s

171 EA: thread group EA.inpl;

172 connecti ons

173 EGA to_ATC port_connection: port EG.EQ _to ATC port -> EG _to_ATC port;
174 fl ows

175 EGA to_ATC port_source: flow source EG.EQ _to_ ATC port_source ->

Copyright 2018 Adventium Labs 14

Integrated AADL Analysis

176 EGA to_ATC port_connection -> EG _to_ATC port;
177 end EG _process.inml;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 18. Flowsfor the EGI process

These components are only sources or sinks of dataflows, so each thread group and process only needs one connection
and one data flow each. A f| ow sour ce component is the origin of data (e.g. sensors) and af |l ow si nk is
the terminal component in the information flow (e.g. actuators, memory, etc.). Information in AADL systems flows
fromaf | ow sourcetoafl ow si nk component. Fl ow pat hs denote intermediary components that pass the
information on to another component.

Adding End to End Flows to the AADL BALSA Model

Next you will define flow paths through the transporter components. These are located in
bal sa_i nt egrati on_nodel . aadl . Unlikethe UoP components, thereare no flow declarationsfor thet r ans-
port ers generated by the trandator. Add af | ows section between the f eat ur es and pr operti es sections
of each of the three abstract transporter declarationswith af | ow pat h betweeni nput 0 and out put (see Exam-
ple 19).

98 flows
99 flow path: flow path input0 -> output;
100

101 properties

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_i nt egrati on_nodel . aadl]

Example 19. Flow Path for each Transporter

With all of the component flows declared, you are ready to add theend to end fl ows through the integrated
system necessary for latency analysis. Unlikethe other types of flow declarations,end t o end f | ows only havean
implementation. Navigate to BALSA | nt egrati on_Mdel . i npl inbal sa_i nt egrati on_nodel . aadl
and add af | ows section below the connections. Theend t o end f | owisdeclared from sourceto sink following
the logical flow from one component flow implementation to the next through connections. Examples of theend t o
end f | owdeclarations are shown in Example 20. Keep in mind that yourswill differ dlightly depending on what you
named theflow pathsyou created inthe ATCManager andt r ansport er s. Createtwoend t o end fl ows;one
fromEQ through ATCto ADSB and onefrom Ai r Conf i g through ATCto ADSB (see Example 20). Notice that flow
declarations are called using the component_name.flow_name syntax while connections are called by name only.

70 fl ows

71 ETE EG: end to end flow Instance_of EQ _UoP. EA to_ATC port_source ->
72 connection0 -> Tenplate_view from EQ Data_transporter.flow path ->
73 connectionl -> Instance_of ATC UoP. EG _To_ADSB path -> connection2

74 -> Tenmpl ate_vi ew from ATC Data_transporter.flow path -> connection3
75 -> | nstance_of _ADSB UoP. ADSB_Fr om ATCVanager Port _si nk;

76

77 ETE AirConfig: end to end fl ow

78 I nstance_of _Air_Conf_UoP. Ai r Config_to_ATC port_source -> connection4
79 -> Template_view fromAircraft_Config_transporter.flow path ->

80 connection5 -> Instance_of ATC UoP. Ai rConfi g_To_ADSB path -> connection2 ->
81 Tenpl ate_vi ew from ATC Data_transporter.flow path -> connection3 ->

Copyright 2018 Adventium Labs 15

Integrated AADL Analysis

82 I nst ance_of _ADSB_UoP. ADSB_Fr om ATCMVanager _Port _si nk;
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/L2_bal sa/ bal sa_i nt egrati on_nodel . aadl]

Example 20. End to End Flows

You will returnto theseend to end fl ows later when you are performing latency analysis. Generate another
diagram of your BAL SA integration model and nameit BALSA wi t h_Fl ows (see Figure 4). Notice that you will
have to edit this diagram as you did in the section called “Using OSATE tools to Create and View Diagrams”.

r N

BALSA_Integration_Model.impl*

Instance_of_Air_Conf_UoP* I I Instance_of_EGI_UoP*
AirConfig_to_ATC_port EGI_to_ATC_port
— —
Template_view_from_Aircraft_Config_transporter® Template_view_from_EGI_Data_transporter®
output input0 inputl output
- 3
(Uopy
Instance_of _ATC_UoP*
ATC_From_AirConfig_Port ATC_From_EGI_Port
| ol ie

Template_view_from_ATC_Data_transporter*
input0 output
Instance_of_ADSB_UoP*
ADSB_From_ATCManager_Port

Figure 4. Edited BAL SA Integration Model

If your data flows are defined correctly then you should see a clear data flow path through your BALSA system. Any
sections that are missing in your diagram indicate that something is missing or incorrect in your flow declarations.

Adding Properties to an AADL Model

AADL model elements can be tagged with properties used for various types of analysis. Property types are declared
in property sets, which are AADL filesthat define the attributes of properties such as units, types, and ranges. AADL
comes with some pre-defined property sets located in the Pl ugi n_Cont ri but i ons directory. Users can write

Copyright 2018 Adventium Labs 16

Integrated AADL Analysis

their own property sets to use with their models or reference these predefined property sets. To add a property to a
model, you must first include the name of the property set at the top of your model in awi t h clause in the same way
that you would reference an AADL model.

Toadd propertiesto an AADL component, add apr oper t i es declaration within achosen element (see Example 21).
Properties are declared using the syntax of Property Set Name::Property. Asmentioned in earlier sections, the trans-
lator automatically populates the model with some properties inferred from the FACE model.

26 properties

27 FACE: : Segnent => PSSS;

28 FACE: : Profil e => safety;

29 FACE: : UUI D => " _hwTrh9EMLEei Bl KadCQCZ8Q'

From [/ cygdrive/ c/ Repos/ DO3/ BAT/trai ni ng_material s/ L1 bal sa/ bal sa_PSSS. aadl]

Example 21. Sample Properties Generated from the FACE data model

Properties can be added for the purpose of model annotation, analysis, or both. Add Code_Si ze properties to the
four UoP thread groupsin bal sa_PCS. aadl and bal sa_PSSS. aadl with reasonable values for BALSA (e.g.
1000 bytes). Code_Si ze is from one of the predefined property sets, so you do not have to include the property
set name for these declarations. Propertieslike Code_Si ze enable quanititaive analysisto be performed by OSATE
plugins (see Example 22).

37 Code_Si ze => 1000 bytes;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_PSSS. aadl]

Example 22. Add a code size property

Performing Latency Analysis on the AADL BALSA Model

The latency analysistool is one of the standard OSATE tools that takes timing properties in your AADL model and
calculates expected latency valuesfor full end to end system flows. The threadsthat you added to your AADL BALSA
model in the section called “Adding Threads to the AADL BALSA Model” have an execution time property. Go to
thetransportersinbal sa_i nt egrati on_nodel . aadl andadd aLat ency property declaration oneachf | ow
pat h (see Example 23). This property is declaring that there is a latency of 1-2 ms associated with communications
acrossthe TSS

118 properties
119 Latency => 1 ns .. 2 ns applies to flow path;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/trai ni ng_material s/L2_bal sa/ bal sa_i ntegrati on_nodel . aadl]

Example 23. Latency Property on each Flow Path

Go the the end to end flows in BALSA Integration_Model.inpl in
bal sa_i ntegrati on_nopdel . aad and add aLat ency property declaration (see Example 24). Thisisyour la-
tency budget for the BALSA system, which will be compared to the latency analysis results.

85 properties

Copyright 2018 Adventium Labs 17

Integrated AADL Analysis

86 Latency => 10 ns .. 20 ns applies to ETE EG, ETE_Airconfig;
87 end BALSA Integration_Model.inpl;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/L2_bal sa/ bal sa_i nt egrati on_nodel . aadl]

Example 24. End to End Latency Budget

With these added latency properties, you have enough information to perform latency analysis on your AADL BALSA
model. AADL Analysis tools use instance models as input, which resolve the attributes of the declarations and im-
plementations into a single component representation and build the full system hierchy of the components. Generate
an instance model of your BALSA system by right clicking the BALSA | nt egr ati on_NModel . i npl abstract
implementation in the Outline view and select Instantiate System. Locate the instance model in the i nst ances
directory and select it. Go to Analyses>Timing>Check Flow Latency. The results of latency analysis will be added
to adirectory namedr epor t s that will be generated inthei nst ances directory. Open the CSV report and verify
that the Min Actual latency of both flowsis 11.0 ms. Note that the Max Actual latency is 2010 ms due to the 1 second
sampling delay that was generated by the translator for each thread group (see Figure 5).

A B c© D E F G H | J K L M N o P Q
1 Latency analysis with preference settings: asynchronous system/partition end/worst case as max compute execution time/best case as full queue min compute execution time
2
3 Latency results for end-to-end flow 'ETE_EGI' of system 'BALSA_Integration_Model.impl'
1
5 Result Min Specii Min Actua Min Meth Max Speci Max Actu: Max Meth Comments
6 thread Instance_of_I3.0ms processing time 4.0ms processing Using execution time as deadline was not set
7 connection Instance_0.0ms no latency 0.0ms no latency
8 abstractTi1.0ms 1.0ms specified 2.0ms 2.0ms specified
9 connection Template0.0ms no latency 0.0ms no latency
10 thread Instance_of_+0.0ms sampling 1000.0ms sampling Assume P¢Max: Worst case: Round up sampling delay to period 1000.0ms
11 thread Instance_of +3.0ms processing time 4.0ms processing Using execution time as deadline was not set
12 connection Instance_0.0ms no latency 0.0ms no latency
13 abstract T 1.0ms 1.0ms specified 2.0ms 2.0ms specified
14 connection Template0.0ms no latency 0.0ms no latency
15 thread Instance_of +0.0ms sampling 994.0ms sampling Assume PeMin: Best Assume syMax: Worst case: Round up sampling delay to period 1000.0ms
16 thread Instance_of +3.0ms processing time 4.0ms processing Using execution time as deadline was not set
17 Latency Tc2.0ms 11.0ms 4.0ms 2010.0ms
18 Specified End To End10.0ms 20.0ms

19 End to end Latency Summary

20 WARNING Minimum specified flow latency total 2.00ms less than expected minimum end to end latency 10.0ms (better response time)
21 SUCCESS Minimum actual latency total 11.0ms is greater or equal to expected minimum end to end latency 10.0ms

22 ERROR Maximum actual latency total 2010.0ms exceeds expected maximum end to end latency 20.0ms

23 WARNING Jitter of actual latency total 11.0..2010.0ms exceeds expected end to end latency jitter 10.0..20.0ms

24

25

26

27 Latency results for end-to-end flow 'ETE_AirConfig' of system 'BALSA_Integration_Model.impl'

28

29 Result Min Specil Min Actua Min Meth: Max Speci Max Actuz Max Meth Comments

30 thread Instance_of +3.0ms processing time 4.0ms processing Using execution time as deadline was not set

31 connection Instance_0.0ms no latency 0.0ms no latency

32 abstract T.1.0ms 1.0ms specified 2.0ms 2.0ms specified

33 connection Template0.0ms no latency 0.0ms no latency

34 thread Instance_of_+0.0ms sampling 1000.0ms sampling Assume P<Max: Worst case: Round up sampling delay to period 1000.0ms
35 thread Instance_of +3.0ms processing time 4.0ms processing Using execution time as deadline was not set

36 connection Instance_0.0ms no latency 0.0ms no latency

37 abstract T 1.0ms 1.0ms specified 2.0ms 2.0ms specified

38 connection Template0.0ms no latency 0.0ms no latency

39 thread Instance_of _+0.0ms sampling 994.0ms sampling Assume P¢Min: Best Assume syMax: Worst case: Round up sampling delay to period 1000.0ms
40 thread Instance_of_s3.0ms processing time 4.0ms processing Using execution time as deadline was not set

41 Latency Tc2.0ms 11.0ms 4.0ms 2010.0ms

42 Specified End To End10.0ms 20.0ms

43 End to end Latency Summary

44 WARNING Minimum specified flow latency total 2.00ms less than expected minimum end to end latency 10.0ms (better response time)
45 SUCCESS Minimum actual latency total 11.0ms is greater or equal to expected minimum end to end latency 10.0ms

46 ERROR Maximum actual latency total 2010.0ms exceeds expected maximum end to end latency 20.0ms

47 WARNING Jitter of actual latency total 11.0..2010.0ms exceeds expected end to end latency jitter 10.0..20.0ms

IS

Figure5. Latency Report

Thisreport shows both afailure case aswell as asuccessful one. Line 21 shows that the actual minimum latency of 11
ms is within the specified budget, so the test was successful. However, line 22 shows an error message that states the
actual maximum latency of 2010 msis above the upper latency bound of 20 ms. This error is coupled with awarning
on both the instance model as well as the latency report.

Copyright 2018 Adventium Labs 18

Integrated AADL Analysis

Optional: Packaging the Transporters into a single TSS
Example

The transporter segment abstracts generated by the FACE Data model to AADL translator can be packaged in
AADL into a single TSS. The trandator is a generic tool that cannot infer how many TSS components exist in
a system. It generates a transporter for every UoP interface. It is up to the user to define how these transporter
segments relate to the actual TSS configuration of the system. In the case of BALSA, there is one TSS com-
ponent, so you are going to package all of the transporters into one component. In your BALSA AADL project,
create a copy of bal sa_i ntegrati on_nodel . aadl and name it bal sa_i ntegrati on_TSS. aadl .
You will want this model separate from the integration model that you will be using for the remain-
der of the training. Rename BALSA | ntegrati on_Mdel to BALSA |ntegration_Mdel _TSS so
you do not get it confused with the integration model used in the training. Create a new TSS abstract
component and TSS. i npl implementation and cut and paste the transporters from the subcomponents of
BALSA | ntegrati on_Mdel _TSS. i npl to be subcomponents of TSS. i npl (see Example 25). This should
generate several warningsin BALSA | nt egrati on_Mdel _TSS. i npl . You will resolve these later in this sec-
tion.

211 abstract inplenentation TSS.inpl
212 subcomponent s
213 Tenpl ate_view from EG _Data_transporter:

214 abstract Tenplate_view from EG Data_transporter;

215 Tenpl ate_vi ew from ATC Data_transporter:

216 abstract Tenplate_view from ATC Data_transporter;

217 Tenpl ate_view fromAircraft_Config_transporter:

218 abstract Tenplate_view fromAircraft_Config_transporter;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2_bal sa/ bal sa_TSS package. aadl]

Example 25. TSS Abstract Component

Addf eat ur es tothe TSS abstract: one input and one output for eacht r anspor t er . Copy the properties of each
f eat ur e from the corresponding ports on thet r ansport er s to the TSS f eat ur es. Create connect i ons
from each of the TSS portsto their corresponding t r anspor t er ports (see Example 26).

167 abstract TSS
168 f eat ures
169 EA input: in feature

170 bal sa_data_nodel : : EG _Data_Pl atforminmpl {
171 FACE: : UUID => " _hwdLZEMLEei Bl KadCQCz8Q';
172 };

173

174 EGA output: out feature

175 bal sa_data_nodel :: EG _Data_Pl atforminmpl {
176 FACE: : UUID => " _hwdLYOMLEei Bl KadCQCz8Q';
177 };

178

179 ATC input: in feature

180 bal sa_dat a_nodel : : ATC Data_Pl atforminmpl {
181 FACE: : UUID => " _hwdLZOMLEei Bl KadCQCz8Q';
182 };

183

Copyright 2018 Adventium Labs 19

Integrated AADL Analysis

184 ATC out put: out feature

185 bal sa_dat a_nodel : : ATC Data_Pl atform i mpl {

186 FACE: : UUID => " _hwdLZkMLEei Bl KadCQCz8Q';

187 };

188

189 Aircraft_input: in feature

190 bal sa_data_nodel :: Aircraft_Config_Platforminpl {
191 FACE: : UUI D => " _hwdLakMLEei Bl KadCQCz8Q';

192 };

193

194 Aircraft_output: out feature

195 bal sa_data_nodel :: Aircraft_Config_Platforminpl {
196 FACE: : UUI D => " _hwdLaUMLEei Bl KadCQCz8Q';

197 };

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L2_bal sa/ bal sa_TSS package. aadl]

Example 26. TSS Features

Addfl ow pat h declarations and implementations that start and end at the TSS ports and go through your newly
created connections and the relevant transporter (see Example 27 and Example 28).

200 flows

201 EG flow path: flow path EG _i nput -> EG _out put;
202

203 ATC flow path: flow path ATC input -> ATC output;
204

205 Aircraft _flow path: flow path Aircraft_input ->
206 Aircraft_out put;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_material s/ L2 _bal sa/ bal sa_TSS package. aadl]

Example 27. TSS Flow Paths

230 fl ows

231 EG flow path: flow path EG input -> EG _in ->

232 Tenpl ate_view from EG Data_transporter.flow path -> EG _out
233 -> EGQ _out put;

234

235 ATC flow path: flow path ATC i nput -> ATC in ->

236 Tenpl ate_view from ATC Data_transporter.flow path -> ATC out
237 -> ATC out put;

238

239 Aircraft _flow path: flow path Aircraft _input -> Aircraft_in ->
240 Tenpl ate view fromAircraft_Config transporter.flow path ->
241 Aircraft_out -> Aircraft_output;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/trai ni ng_material s/ L2 bal sa/ bal sa_TSS package. aadl]

Example 28. TSS Flow Path Implementations

Now navigate back to BALSA Integration_Mdel TSS.inpl and add TSS.inpl as a subcompo-
nent. Replace any references to the origina flows though and connections to the transporters in

Copyright 2018 Adventium Labs 20

Integrated AADL Analysis

BALSA | ntegration_Mdel TSS.inpl withther equivalent flows through and connections to the TSS sub-
component you just added (see Example 29). This should resolve the model warnings that appeared earlier.

27 systeminplementati on BALSA | ntegration_Mdel _TSS. i npl
28 subconponent s

29

30 Exampl e_Processor: processor Exanple_Proc.inmpl;
31

32 I nst ance_of _ATC UoP: process

33 bal sa_PCS: : ATCManager _process.inpl {

34 FACE: : UUID => " _hwdLUUMLEei Bl KadCQCz8Q';
35 b

36

37 I nstance_of _EQ _UoP: process

38 bal sa_PSSS: : EG _process.iml {

39 FACE: : UUI D => " _hwdLVUMLEei Bl KadCQCz8Q';
40 b

41

42 I nstance_of _Ai r _Conf_UoP: process

43 bal sa_PSSS: : Ai r Confi g_process.inpl {

44 FACE: : UUID => " _hwdLVOMLEei Bl KadCQCz8Q';
45 };

46

47 I nst ance_of _ADSB_UoP: process

48 bal sa_PSSS: : ADSB_process.inpl {

49 FACE: : UUID => " _hwdLWUMLEei Bl KadCQCz8Q';
50 b

51

52 UDP: bus {

53 FACE: : UUID => " _hwdLaOMLEei Bl KadCQCz8Q';
54 };

55

56 TSS: abstract TSS.inpl;

57

58 connecti ons
59 connection0: feature Instance_of EG _UoP.EG _to_ATC port ->

60 TSS.EG _input {FACE :UU D => "_hwdLXEMLEei Bl KadCQCZ8Q";
61 b

62

63 connectionl: feature TSS. EGA _output ->

64 I nst ance_of _ATC UoP. ATC From EA Port {

65 FACE: : UUI D => " _hwdLXUMLEei Bl KadCQCz8Q';

66 b

67

68 connection2: feature |Instance_of ATC UoP. ATC To_ADSB Port
69 -> TSS. ATC input {FACE::UU D => "_hwdLXkMLEei Bl KadCQCzZ8Q";
70 b

71

72 connection3: feature TSS. ATC out put ->

73 I nst ance_of _ADSB_UoP. ADSB_Fr om ATCMVanager _Port {

74 FACE: : UUID => " _hwdLXOMLEei Bl KadCQCz8Q';

75 b

76

Copyright 2018 Adventium Labs 21

Integrated AADL Analysis

77 connection4: feature Instance_of_Air_Conf_UoP. AirConfig to_ ATC port

78 -> TSS. Aircraft _input {FACE: :UU D => "_hwdLYEMLEei Bl KadCQCZ8Q';
79 b

80

81 connection5: feature TSS. Aircraft_output ->

82 I nst ance_of _ATC UoP. ATC From AirConfig_Port {

83 FACE: : UUID => " _hwdLYUMLEei Bl KadCQCz8Q';

84 };

85

86 fl ows
87 ETE EG: end to end flow Instance_of EQ _UoP. EA to_ATC port_source ->

88 connection0 -> TSS.EG _flow path ->

89 connectionl -> Instance_of ATC UoP. EG _To_ADSB path -> connection2
90 -> TSS. ATC flow _path -> connection3

91 -> | nstance_of _ADSB UoP. ADSB_Fr om ATCVanager Port _si nk;

92

93 ETE_AirConfig: end to end fl ow

94 I nstance_of _Ai r_Conf_UoP. Ai r Config_to_ATC port_source -> connection4
95 -> TSS. Aircraft_flow path ->

96 connection5 -> Instance_of ATC UoP. Ai rConfig_To_ADSB path ->

97 connection2 -> TSS. ATC fl ow _path -> connection3 ->

98 I nst ance_of _ADSB_UoP. ADSB_Fr om ATCMVanager _Port _si nk;

99

From [bal sa_TSS package. aadl]

Example 29. Update flow declar ations

If your model is error free, then you have successfully implemented your TSS. Generate and rearrange a diagram of
this system asyou did in the section called “Using OSATE toolsto Create and View Diagrams’ and the section called
“Introduction to Data Flowsin AADL” (see Figure 6).

Copyright 2018 Adventium Labs 22

Integrated AADL Analysis

BALSA_Integration_Model_TSS.impl*

Example_Processor® < uoP >

AirConfig_to_ATC_port

/ Instance_of_Air_Conf_UoP* /
—

Aircraft_input Instance_of_ATC_UoP*

Aircraft_output ATC_From_AirConfig_Port

ATC_To_ADSB_Port

e

ATC_From_EGI_Port I I

y——————————

v, —x

/ Instance_of_EGI_UoP* I

EGI_to_ATC_port EGI_input EGI_output
— » !
1
1
1
1
1
1
1
Instance_of_ADSB_UoP* H
ADSB_From_ATCManager_Port ATC_output ATC_input :
i 1
I &

[——

Figure 6. BALSA with TSS

Lesson 3. Executing a BALSA-Derived Demon-
stration System

Prerequisites

» Download and install the prerequisite model archive in your OSATE workspace (see the section called “ Setup”)

* Install the Basswood Resal-Time Executive for Multiprocessor System (RTEMS) build environment on your work-
station (see the section called “ Setup”)

 Install the FASTAR Tool Suite as well as the ARINC653 Configuration Generator Plugin (see the section called
“Additional FACE and AADL Resources’)

Summary

In thislesson, you will learn how to:
1. Configure the Basswood model's real-time execution attributes
2. Generate source code from the Basswood model

3. Build and run the example application generated from the model on the real-time execution environment

Introduction to Basswood

From thislesson on, you will be working with anew AADL model named Basswood. Create an AADL project named
Basswood and copy and paste the Basswood AADL model files from the prerequisite model archive in it (located
in/data_model/training_Basswood).

Copyright 2018 Adventium Labs 23

Integrated AADL Analysis

Basswood is a subset of BALSA with only an ATC, AirConfig, and EGI. It isthe AADL equivalent of the example
you are going to work with on RTEMS (see Figure 8). The Basswood AADL model was generated using the same
translator you used in the section called “Lesson 1. The BALSA Model” and then altered to more closely resemble
the configuration used in the RTEM S example.

Basswood_Integration_Meodel.impl*

proc* N ¥

Template_view_from_EGI_Data_transporter*

i ATC_From_EGI_Port
input0 output g - - Template_view_from_Aircraft_Config_transporter*
—’ AirConfig_to_ATC_port input0 output
EGI_to_ATC_port =

ATC_From_AirConfig_Port
! -

|

x86*

Figure7. AADL Graphical Model of the RTEM S Basswood
Demo Processor, Process, and Communication I nfrastructure

The FACE Data Model to AADL Trandator, by default, generates thread groups each in their own process. RTEMS
does not have memory partitioning, so all of the UoP thread groups in Basswood are in the same process hamed
rtems. i npl inthefilebasswood_schedul e. aadl .

rtems.impl*
iV T ATCManager: (I AirConfig* 3
ATC_From_AirConfig_Port :ATC_From_AirConfig_Port] :)) I .)
»l ' . | : | AirConfig_to_ATC_port | AirConfig_to_ATC_port
|r [o t
H] N o e ’
ATC_From_EGI_Port LATC_From_EGI_Port :
t | |
N ——————————— e ————— -
1 \
: EGI* I
: EGI_to_ATC_port I EGI_to_ATC_port
s
l‘- ————————————————— - r

Figure 8. AADL Graphical Model of the Basswood
Demo UoP Thread Groupsin thertems.impl Processor

As in the BALSA example, the top-level integration system is Basswood_| nt egrati on_Model . i mpl
located in the file basswood integration nodel. Open this file and navigate to
Basswood_| nt egrati on_Model . i npl in the Outline view. Right click the implementation and select the
menu option Instantiate. Y ou will use thisinstance model later to generate source code for RTEMS.

Configuring Basswood Real-Time Attributes

In this example you will execute a BAL SA-based training model application, named Basswood, on RTEMS. Y ou will
be using RTEMS to verify your models using areal-world system. Thistutorial runs RTEMS in an emulator.

There are two task attributes that impact the real-time scheduling of the training example, applied to the producer EGI
and AirConfig tasks and the consumer ATC task. The two attributes are;

Copyright 2018 Adventium Labs 24

Integrated AADL Analysis

1. Tim ng_Properties::Period defines the length of that time interval in which the task is periodicaly in-
voked, and

2. Tim ng_Properties:: Deadl i ne defines the maximum execution time for a single (contiguous) execution
of the task.

Thetraining example uses the rate-monotonic scheduler (RMS) employed by the RTEM S execution environment (see
Figure 8 for moreinformation). By adjustingtheper i od anddeadl i ne attributesonthe EGI, AirConfig,and ATC
tasks, you can modify the timing of the task invocations. It is possible, for example, to configure the EGI, AirConfig,
and ATC periods and deadlines in a way that causes messages from the EGI to get dropped, or for one of the tasks
to miss an iteration deadline.

Configuring the Real-Time Execution Environment

Before you generate source code from the model, examine the project properties that define how the Basswood model
is configured in the real-time execution environment. In OSATE, verify that you have the Configuration Generation
plugin installed by going to Help>About OSATE2>Installation Details. Look for a plugin named ARINC653 Con-
figuration Generator under the Installed Software tab. If this plugin is not listed, follow the installation instructions
found in the LynxOS-178B Configuration Generation User Guide (see the section called “ Setup”). Invoke the Prefer-
ences menu under Window and select RTOS Config. For the Target RTOS property, select RTEMS. The remainder
of the properties on this screen address alternative RTOS configurations. Click Apply and Close.

Generating Source Code and Running the Real-Time Ap-
plication

To generate RTOS source code for the model, in OSATE generate an instance of
Basswood_| nt egrati on_Mddel . i npl in basswood_i nt egrati on_nodel as you did in the section
called “Lesson 2. Modifying the BALSA AADL Model”. Select the instance filein the AADL Navigator and select
the Generate RTOS Configuration menu option under the RTOS menu. A dialog will appear when the code generation
iscomplete.

The generated source file named schedul i ng. c identifies the scheduling parameters of the EGI, AirConfig, and
ATC components. Thisfileis generated in the same directory as the Basswood AADL files.

Next, start the Basswood VirtualBox virtual machine (V M), which contains the RTEM S execution environment build
inaLinux Ubuntu installation (See the section called “ Setup”). Note that in the following examples the shorthand ~/
is occasionally used to denote the virtual machine path / hone/ basswood Double-click on the Basswood image,
and when the login prompt appears, type the password basswood (lowercase) (See Figure 9).

Copyright 2018 Adventium Labs 25

Integrated AADL Analysis

File Machine Help

@ Do > I W
Ln.,pg < I u <
New Settings Discard Start Machine Tools | | Global Tools

. ® Welcome to VirtualBox!

The left part of this window lists all virtual machines and 0N
virtual machine groups on your computer.
_—

The right part of this window represents a set of tools
which are currently opened (or can be opened) for the
currently chosen machine. For a list of currently available
tools check the corresponding menu at the right side of
the main tool bar located at the top of the window. This
list will be extended with new toals in future releases.
You can press the F1 key to getinstant help, or visit '
. virtualbox.org for more information and latest news.

Details

Tool to observe virtual machine (VM) details. Reflects groups of properties for the
currently chosen VM and allows basic operations on certain properties (ike the machine =
storage devices).

Snapshots
Tool to contral virtual machine (M) snapshots. Reflects snapshots created for the
currently selected UM and allows snapshot operations like create, remove, restore

(make current) and observe their properties. Alows to edit snapshot attributes like
name and desaiption.

Figure9. Basswood Virtual Machine

Share your OSATE workspace with the Basswood VM by going to Machine>Settings.... Under Shared Folders click
the blue folder icon on the right side (see Figure 10).

E Basswood - Settings

~ : — ol X

General
System
Display

Storage

YEEEIN

Audio

Network

L

Serial Ports

use

Shared Folders

AEb% @

User Interface

Shared Folders

Shared Folders

Name Path Auto-mount Access E

Machine Folders
Transient Folders

Invalid settings detected & I OK I l Cancel

Figure 10. Shared Folder Menu

Create anew shared folder named basswoodwor kspace with the Auto-mount and Make Permanent options select-
ed. For Folder Path click the arrow on the right side and navigate to the Basswood folder in your OSATE workspace.
Click OK. Verify that the Basswood folder has full access rights and click OK.

From the virtual machine console, create a mount point and mount the share using the following commands, as also

shown in Figure 11.

$ nkdir /hone/ basswood/ basswoodwor kspace

$ sudo mount -t vboxsf

-0 ui d=1000, gi d=1000 \

Copyright 2018 Adventium Labs

26

Integrated AADL Analysis

basswoodwor kspace / hone/ basswood/ basswoodwor kspace

As before, the password is "basswood" in all lower case. Note that Ubuntu does not show any characters while you
type your password in the command shell.

basswood@basswood-VirtualBox:~$ cd ~f
basswood@basswood-VirtualBox:~$ mkdir fhome/basswood/basswoodworkspace
basswood@basswood-VirtualBox:~$ sudo mount -t vboxsf -o uid=1000,gid=1000 basswo

odworkspace /home/basswood/basswoodworkspace/
[sudo] password for basswood:
basswood@basswood-VirtualBox:~5 D

ftHome Documents

Documents
Downloads
Music

Pictures

i B &<+ D

Videos

Trash

@ Eb

basswoodworkspace | &

L

Network
Bl ramnoker
Figure 11. Mounting the Shared Workspace in the Basswood VM
Copy the basswood directory from your host machine shareinto /nome/basswood/devel opment. The exact organization

of the host machine share depends on your configuration, but the command will look like the following:

$ cp -R /honme/ basswood/ basswoodwor kspace/ basswood \
/ hone/ basswood/ devel opnent

Enable execution of ther un scriptin/ hone/ basswood/ devel opnent / basswood using the following com-
mand:

$ chnod +x / home/ basswood/ devel oprment / basswood/ r un
Copy the generated file schedul i ng. ¢ over to the RTEMS environment, under the directory ~/ devel op-
nment / basswood/ aut ogen/ Basswood. Replace the existing schedul i ng. ¢ if necessary.
In the Basswood VM execution environment, bring up aterminal and go to the ~/ devel opnent / basswood di-

rectory (see Figure 12). Build the example FACE-RTEMS system by typing

$ make main

Copyright 2018 Adventium Labs 27

Integrated AADL Analysis

[

Terminal ty B = «) 206Pm %

basswood@basswood-VirtualBox: ~/development/basswood
basswood@basswood-VirtualBox:~$ cd development/basswood/
basswood@basswood-VirtualBox: $ 1s
total 52

drwxr-xr-x 1

-la

basswood basswood F
basswood basswood F
basswood basswood 4 F
basswood basswood 4896 . 2
basswood basswood 4896 M 1
1
2
1
1
2

(5] 14:85
4

2

2

4

4 basswood basswood 4096
2

[}

4

il

il

il

basswood basswood 4896
basswood basswood 4896 4 1

basswood basswood 4

basswood basswood . Makefile
basswood basswood 139 Fe readme.md

=
9
=

- basswood basswood eb 2 :59 run
xr-x 2 basswood basswood 4096 : 23 14:05
basswood@basswood-VirtualBox: S

B = D D

@ &] I (3 3] right car

Figure 12. Basswood Build Terminal

When the build is complete, you can invoke a simple script to execute the example model in the RTEMS run-time
environment.

$./run

The EGI and AirConfig componentswill periodically send simulated aircraft and position datato the ATC component.
The ATC component receives the data and simply prints out the results as it receives it. The results are streamed to
the terminal output. The system is designed to terminate automatically after 10 sets of message iterations between
the components, and the number of missed ATC periodsis listed at the end. The RTEMS environment will then re-
initialize and restart the system. Y ou can stop the run by pressing Cont r ol - c.

Descriptions of error codes printed by RTEMS can be found in the online RTEMS documentation [https:/
docs.rtems.org/branches/master/c-user/directive_status_codes.html].

Lesson 4. Utilization Analysis

Prerequisites

e Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-
wood model in your OSATE workspace

e Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-
wood demo running on RTEMS

* Install the FASTAR Tool Suite prerequisite tools (see the section called “ Additional FACE and AADL Resources’)

Copyright 2018 Adventium Labs 28

https://docs.rtems.org/branches/master/c-user/directive_status_codes.html
https://docs.rtems.org/branches/master/c-user/directive_status_codes.html
https://docs.rtems.org/branches/master/c-user/directive_status_codes.html

Integrated AADL Analysis

Summary

In thislesson, you will learn how to:

1. Add utilization properties to the Basswood AADL model

2. Perform utilization analysis on the Basswood AADL model using the FASTAR tool suite.
3. Demonstrate utilization with Basswood on RTEMS

4. Demonstrate success and failure Basswood on RTEMS

5. Demonstrate utilization failure with the AADL BALSA model

Adding Utilization Properties to the Basswood Model

Y ou learned how to add properties to your AADL models and perform latency analysis using the OSATE tool suitein
the section called “Lesson 2. Modifying the BALSA AADL Model”. Now you are going to add FASTAR utilization
propertiesto perform utilization analysis on the Basswood AADL model (see Figure 13) using the FASTAR tool suite
installed as a prerequisite for thislesson. Recall from the section called “ Introduction to Basswood” that Basswood is
asubset of BALSA and is the example you are working with on RTEMS (see Figure 14).

P

Basswood_Integration_Model.impl*)
________ queue J“\

proc* N 4
Template_view_from_EGI_Data_transporter*
i ATC_From_EGI_Port
input0 output o - Template_view_from_Aircraft_Config_transporter*

AirConfig_to_ATC_port input0 output

EGI_to_ATC_port

—

—— or ——— F

ATC_From_AirConfig_Port
P '

Figure 13. AADL Graphical Model of the RTEM S Basswood
Demo Processor, Process, and Communication I nfrastructure

rtems.impl*
i T ATCManagers [ArConfigt 3
ATC_From_AirConfig_Port } ATC_From_AirConfig_Port | !
»l . > | I : AirConfig_to_ATC_port | AirConfig_to_ATC_port
r 1 1 I rrj }
: 1 N ————— ’
ATC_From_EGI_Port LATC_From_EGI_Port I
t ° | I
. L -
t \
: EGI* I
: EGI_to_ATC_port } EGI_to_ATC_port
—
Ih ————————————————— - r

Figure 14. AADL Graphical Model of the Basswood
Demo UoP Thread Groupsin thertems.impl Processor

The FASTAR suite includes tools to perform utilization and schedule analysis. Utilization analysis verifies that the
resources (e.g. processors, busses, memory) are able to meet the computational, communication, and storage demands
of the system (for more information see section 5 of the FASTAR User Guide [https.//camet.adventium.com/CAMET/

Copyright 2018 Adventium Labs 29

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

CAMET/wikis/tool _pages/FASTAR]). Schedulability analysis determines whether the worst case execution times are
within the deadlines declared it the model. Verify that the FASTAR property set has been installed with the tool suite
by locating it in the Pl ugi n_Contri buti ons directory under Advent i um To perform FASTAR utilization
analysis on the Basswood model, you need to include timing and demand properties and hardware. The Basswood
model has (inbasswood_schedul e. aadl) asinglethread in each UoPt hread group inthertens. i npl
process. Each thread group hasaper i od property declaration assigned to it (see Example 30).

44 process inplenentation rtens.inpl
45 subconponent s
46 ATCManager: thread group basswood PCS:: ATCVanager . i npl {

47 peri od => 100ns;

48 }s

49 EA: thread group basswood PSSS::EQ.inpl{

50 peri od => 200ns;

51 }s

52 AirConfig: thread group basswood PSSS:: Ai r Confi gUoP. i npl {
53 peri od => 1000ns;

54 }s

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/trai ni ng_materi al s/ L4_basswood/ basswood_schedul e. aadl]

Example 30. A Sample Thread Execution Period Property

First, add FASTAR processor demand properties to each of the UoP thread groups. Open basswood_PSSS. aadl

and basswood_PCS. aadl . Addawi t h FASTARdeclaration to the top of each model. DeclareaM PS_Dermand
of 100.0 MPS and a Code_Si ze of 10 Kbyte for the Ai rConfi g, and EG thread groups in
basswood_PSSS. aadl . Next declareaM PS_Denand of 250. 0 M PSandaCode_Si ze of 30 Kbyt e for
ATCManager in basswood_PCS. aadl . An example of the property declaration syntax is given in Example 31.
M PS_Demand (million instructions per second) isameasure of the demand of a given piece of software on aproces-
Ssor.

89 properties

90 FACE: . Segnent => PSSS;

91 FACE: : Profil e => safety;

92 FACE: : UUI D => " _hwTli AOMLEei Bl KadCQCZ8Q';
93 FASTAR : M PS_Denand => 100.0 M PS;

94 Code_Si ze => 10 Kbyte;

95 end EQ;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L4_basswood/ basswood_PSSS. aadl]

Example 31. EGI Thread Group with Resour ce Demand Properties

In addition to the processr t ens thebasswood_schedul e. aadl filecontainsthe processor genu_x86. Thisis
the hardware component to which you will be binding your Basswood software model. It has several timing properties
laid out in the processor implementation declaration (see Example 32).

74 processor inplenmentation gemu_x86. i npl
75 properties

76 Cl ock_Period => 10 ms;
77 FASTAR: : Packet _Header _Size => 100 Bytes .. 100 Bytes;
78 Transmi ssion_Time => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];

Copyright 2018 Adventium Labs 30

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

79 end gemu_x86. i nmpl;
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_mat eri al s/ L4_basswood/ basswood_schedul e. aadl]

Example 32. Har dwar e Configuration for the Basswood M odel

These properties outline the runtime behavior of the processor. None of these properties are relevant for the utilization
analysis portion of the training. You will return to them in the section called “Lesson 6. Schedulability Analysis’
for performing schedulability analysis. AADL properties can be added to components in two ways:. directly on the
component declaration or implementation as shown above, or they canbeaddedin{ } brackets when the component
isincluded as a subcomponent of a higher level system. You will be adding the processor supply properties using
the latter method to avoid confusing the utilization property declarations with the existing runtime properties used for
schedulability analysis.

Navigate to basswood_i nt egrati on_nodel . aadl . Within Basswood_| nt egrati on_Model . i npl
find the processor x86 subcomponent and add a properties section with M PS_Suppl y and Menory_Si ze prop-
ertiesasin Example 33.

24 system i npl enent ati on Basswood_| nt egrati on_Mdel . i mpl
25 subconponent s

26 proc: process basswood_schedul e::rtens.inpl;

27 x86 : processor basswood_schedul e:: genu_x86. 1 npl {
28 FASTAR: : M PS_Supply => 1000.0 M PS;

29 Menory_Size => 1 MByte;

30 b

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_mat eri al s/ L4_basswood/ basswood_i nt egrati on_nodel .

Example 33. Supply and Memory Size Propertiesfor the Basswood System

Now bind the software UoPs to your newly added hardware. A hardware bi ndi ng is the AADL con-
truct that declares how software logic is partitioned into the available hardware. In the case of Basswood,
all of the software is running in the same process on a single processor. Hardware bindings are captured as
Act ual _Processor_Bi ndi ng and Act ual _Menory_Bi ndi ng propertiesin the top system implementation
Basswood_| nt egrati on_Model . i npl with the syntax in Example 34.

61 properties

62 Act ual _Processor_Binding => (reference (x86)) applies to proc;

63 Actual _Menory_Bi nding => (reference (x86)) applies to proc;

64 Act ual _Connecti on_Bi nding => (reference(queue)) applies to connectionO,
65 connectionl, connection2, connection3;

From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_mat eri al s/ L4_basswood/ basswood_i nt egrati on_nodel .

Example 34. Bind Properties Associating Basswood Softwareto Hardware

Notethat thereisaready an Act ual _Connect i on_Bi ndi ng property declaration in the model. The connections
between system elements are bound to the queue virtual bus component, indicating that all of the system communi-
cations share a single communication queue.

Performing Utilization Analysis on the Basswood Model

Now that your model has both supply and demand properties, you will perform utilization analysis on the
processor. Recall from the section called “Lesson 2. Modifying the BALSA AADL Model” that AADL analy-

Copyright 2018 Adventium Labs 31

Integrated AADL Analysis

sis is performed on instance models. Generate an instance model of your Basswood system by right clicking the
Basswood_| nt egrati on_Model . i npl abstractimplementation inthe Outline view and select Instantiate Sys-
tem. Locate your the instance model inthei nst ances folder and click oniit to select it. Under the Model Analysis
menu select Analyze Utilization. Theresults of your analysis should appear in anew folder named anal ysi s and its
sub directory named r epor t s. The FASTAR tilization analysis tool generates two outputs: XML and CSV. Open
the CSV report and verify that your analysis was successful by comparing it to the example shown in Figure 15.

A B C D E F G H | J K L M N o P Q R
1 Mode Supply Demand MIPS MIPS MIPS MIPS MIPS BPS BPS BPS BPS BPS Byte Byte Byte Byte Byte
2 Resource Component Supply Demand Util Ulimit Margin Supply Demand Util Ulimit Margin Supply Demand Util Ulimit Margin
3 system.no-mode Template_view_fror
4 system.no-mode Template_view_frormr
5 system.no-mode proc.ATCManager
6 system.no-mode proc.AirConfig
7 system.no-mode proc.EGI
8 system.no-mode queue
9 system.no-mode x86 1000 450 0.45. 1] 2.222222 1000000 50000 0.05 1 20
10 system.no-mode x86 proc
11 system.no-mode x86 proc.ATCManager 800 250 0.25 1 32 980000 30000 0.03 1 32.66667
12 system.no-mode x86 proc.ATCManager.ATCThread
13 system.no-mode x86 proc.AirConfig 650 100 0.1 1 6.5 960000 10000 0.01 1 96
14 system.no-mode x86 proc.AirConfig.airConfThread
15 system.no-mode x86 proc.EGl 650 100 0.1 1 65 960000 10000 0.01 1 9%
16 system.no-mode x86 proc.EGl.egiThread

Figure 15. FASTAR Utilization Report in Comma Separ ated Value Format

From thereport examplein Figure 15, you can seethat the processor isableto run Basswood withaM PS uti | i za-

ti on of 0.45 and a memory utilization of 0.05 as shown in the highlighted row. Utilization values are proportional;
memory utilization of 0.05 means that 5% of available memory is used. These are both feasible values for Basswood
running on RTEMS. Thisis an example of a successful utilization analysis result. In the section called “ Demonstrate
a Utilization Failure in AADL” you will see an example of a utilization analysis failure. Next you will demonstrate
this utilization example using Basswood on RTEMS.

Utilization Success of Basswood on RTEMS

Now you will run this example in the RTEMS execution environment. Start the RTEMS VirtualBox virtual machine
(see the section called “ Generating Source Code and Running the Real-Time Application” for instructions). Bring up
acommand line terminal and change the directory to ~/ devel opnent / basswood/ aut ogen/ Basswood, and
start an editor on the sourcefileuti | i zati on. c.

$ vi utilization.c
The contents of the file will look something like the following:

#i ncl ude <basswood. h>

rtems_interval egi _denand = O;
rtens_interval atc_demand 0;
rtems_interval airconfig demand = O;

These values represent the time (in milliseconds) per iteration consumed by the EGI, ATC, and AirConfig components
respectively. These values are independent of the per i od and deadl i ne properties defined on these components,
S0 a system architect can configure the system so that one or more of the components consume more time in their
execution than is budgeted, and as a result deadlines are missed.

Y ou will begin, however, with an exampl e that achieves successful utilization for the three example componentsin the
system, EGI, ATC, and AirConfig. Successful utilization meansthat all three components execute completely without
missing their deadlines. In the editor, set the processing demand value to the following:

Copyright 2018 Adventium Labs 32

Integrated AADL Analysis

rtems_interval egi_demand = 1;
rtenms_interval atc_demand = 10;
rtems_interval airconfig _demand = 1;

Thisdefinesthe executiontimesfor the EGI, ATC, and AirConfig componentsto be 1 ms, 10 ms, and 1 msrespectively.
If the value of the demand is zero, than the component will instead use its period length to represent its demand,
effectively assigning the component 100 percent utilization.

Y ou will haveto rebuild the system once the changes are made. Save your changestouti | i zat i on. ¢ and exit the

editor (: wq). Then go to the ~/ devel opnent / basswood directory. Build the example FACE-RTEMS system
(see Figure 12) by typing

$ make main

When the build is complete, you can invoke the r un script to execute the example model in the RTEMS run-time
environment.

$./run

If everything is set correctly, the example will complete 10 iterations without missing a deadline.

Utilization Failure of Basswood on RTEMS

In this section we will reconfigure the example so that the utilization is over-budgeted for one of the threads and
as a result deadlines are missed. In the RTEMS VirtualBox virtual machine, return to the directory where the
utilization. cresides, ~/ devel opment / basswood/ aut ogen/ Basswood, and open thefile in an editor
again. Then change the value of the AirConfig demand to be 90 ms.

rtens_interval egi_demand 1;
rtems_interval atc_demand 10;
rtems_interval airconfig _demand = 90;

Thischange will force the utilization of the AirConfig thread to a percentage that causes ATC thread to miss deadlines.
Rebuild the system and invoke the r un script to demonstrate a missed deadline.

Demonstrate a Utilization Failure in AADL

Now you will use your Basswood AADL model to recreate a utilization failure similar to what you observed on
RTEMS. Navigate to your M PS_Denand property declarations on ATCManager, Ai r Confi g, and EG and
change themto all to 350 M PS. Changes to the AADL model made after instantiation are not reflected in existing
instance models or analysisresults, so you will haveto reinstantiate Basswood_| nt egr ati on_Mdel . i npl by
right clicking the instance model and selecting the option Reinstantiate. M ake sure that your utilization analysis output
filesare closed and go to Model Analysis>Analyze Utilization to update the output fileswith thenew M PS denand
values. Thetool will generate amodel error at the Act ual _Pr ocessor _Bi ndi ng property declaration indicating
that the processor is over-utilized (see Figure 16).

Copyright 2018 Adventium Labs 33

Integrated AADL Analysis

&1 Problems 2 [Properties ™ AADL Property Values & Console ' Search
1 error, 5 wamings, 0 others
Description - Resource Path Location Type

4 © Errors (1 item)
© x86: Resource overloaded, MIPS margin < 1 relative to allowed utilization limit. basswood _integration_modelaadl /14_basswood line: 52 /14_basswood/basswood_integration_modelaadl FASTAR Model Analysis
Warnings (5 items)

Figure 16. Error Report

Open the CSV fileto verify that the processor is over-utilized. The processor in this configuration has a utilization of
1.05 indicating that the processor isindeed overloaded by this configuration as shown in Figure 17 in the highlighted
row.

A B c D E F G H 1 J K L ™M N o P Q R
1 Mode Supply Demand MIPS MIPS MIPS MIPS MIPS BPS BPS BPS BPS BPS Byte Byte Byte Byte Byte
2 Resource Component Supply Demand Util Ulimit Margin Supply Demand Util Ulimit Margin Supply ~Demand Util Ulimit Margin
3 system.n Template_view_from_
4 system.n Template_view_from_
5 system.n proc.ATCManager
6 system.n proc.AirConfig
7 system.n proc.EGl
8 system.n queue
9 system.nx86 1000 1050 1.05 1/ 0.952381 1000000 50000 0.05 1 20
10 system.nx86 proc
11 system.nx86 proc.ATCManager 300 350 035 1 0.857143 980000 30000 0.03 1 32.66667
12 system.nx86 proc.ATCManager.ATCThread
13 system.nx86 proc.AirConfig 300 350 035 1 0.857143 960000 10000 0.01 1 %
14 system.nx86 proc.AirConfig.airConfThread
15 system.nx86 proc.EGI 300 350 035 1 0.857143 960000 10000 0.01 1 9%
16 system.nx86 proc.EGl.egiThread

Figure 17. Utilization Failure

Now that you have demonstrated the utilization failure case, go back into basswood_ PSSS. aadl and
basswood_PCS. aadl and changethe M PS_Derand properties back to their initializer values from the section
called “ Adding Utilization Propertiesto the Basswood Model”. Reinstantiate the model and perform Utilization analy-
sis once more to remove the warning generated by the failure case.

Lesson 5. Report Generation

Prerequisites

» Completethe section called “Lesson 4. Utilization Analysis’ and have the AADL Basswood model with utilization
properties in your OSATE workspace

» Download and install the prerequisite model archive in your OSATE workspace (see the section called “ Setup”)

» For optional content: Have the CVIS prerequisite tools installed (see the section called “Additional FACE and
AADL Resources’)

Summary

In thislesson, you will learn how to:

1. Generate Example Templates

2. Generate areport of your FASTAR utilization analysis

3. Optional: Automate analysis and report generation tasks using Ant

Creating an Example Report Template

The FASTAR Utilization analysis plugin generates two different output files: CSV and XML. The FASTAR tool
suite includes a report generation tool that takes the XML output from any analysis tool and builds a format-

Copyright 2018 Adventium Labs 34

Integrated AADL Analysis

ted report using a user-specified template. Example templates can be created for HTML and CSV output reports.
Switch OSATE to the XML perspective by selecting the Open Perspective icon in the top right of the OSATE
window. Select XML and click Open. Your workspace view on the left side of the screen should now be called
Project Explorer. Navigate to the . xnl output file from the utilization analysis you performed in the section
called “Lesson 4. Utilization Analysis’. It is located in the analysis directory in your Basswood project. Right click
Basswood | ntegration_Mdel inpl _utilization.xm andselecttheoption Create Report Templates.
Thiswill create anew subdirectory under anal ysi s namedt enpl at es. Within thissubdirectory isafolder named
fastar _utilizati on whichcontainstwo template files. These are example templates for formatting the results
of your utilization analysis. For more information on template-based report generation see section 4 of the FASTAR
User Guide [https://camet.adventium.com/CAMET/CAMET/wikis/tool _pages/FASTAR].

Generating a Formatted FASTAR Utilization Report

Once you have verified that the templates were successfully created, return to
Basswood_| ntegration_Model inpl _utilization.xm andright click to select the option Generate
Reports. This will generate a report for each template in thet enpl at es directory. Formatted reports are found in
ther epor t s subdirectory of anal ysi s. The report generator generated a CSV (see Figure 19) and HTML (see
Figure 18) report of your utilization analysis results. Open both reports and verify that they were successfully popu-
lated. Scroll down to the table titled x86 to find your analysis resultsin the HTML report.

x86
P e P Utilization e e e . .
Supply||Supply|| Supply |Demand|[Demand| Demand||Utilization |[Utilization || Utilization Limit Utilization || Utilization Margin MIPS Margin||Margin
MIPS || BPS Byte MIPS BPS Byte MIPS BPS Byte MIPS Limit BPS [[Limit Byte g BPS Byte
1000.0 1000000.0/|450.0 50000.0 |0.45 0.05 1.0 1.0 2.2222222222222223 20.0
Figure 18. Example HTML Formatted Utilization Report
A B c D E F G H 1 J K L M N o [2 Q R
1 Mode Supply Demand MIPS MIPS MIPS MIPS MIPS BPS BPS BPS BPS BPS Byte Byte Byte Byte Byte
2 Resource Component Supply Demand Util Ulimit Margin Supply ~ Demand Util Ulimit Margin Supply Demand Util ULimit Margin
3 system.n Template_view_from_,
4 system.n Template_view_from_|
5 system.n proc.ATCManager
6 | system.n proc.AirConfig
7 | system.n proc.EGI
8 system.n queue
9 | system.nx86 1000 450 0.45 1 2.222222 1000000 50000 0.05 1 20
10 system.n x86 proc
11 system.n x86 proc.ATCManager 800 250 0.25 1 3.2 980000 30000 0.03 1 32.66667
12 system.nx86 proc.ATCManager.ATCThread
13 system.nx86 proc.AirConfig 650 100 0.1 1 6.5 960000 10000 0.01 1 %
14 system.nx86 proc.AirConfig.airConfThread
15 system.nx86 proc.EGI 650 100 0.1 1 6.5 960000 10000 0.01 1 %
16 system.nx86 proc.EGl.egiThread

Figure 19. Example CSV Formatted Utilization Report

Optional: Automating Analysis and Report Generation
using Ant

Ant allows a user to automate aworkflow using ascript called abui | d. xm file that calls the Ant tasks that consti-
tute the workflow. To create your own Ant workflow for performing utilization analysis and generating a formatted
report, navigate to your Basswood AADL project. Verify that you are in the XML perspective by selecting the Open
Perspective icon in the top right of the OSATE window. Select XML and click Open. Create abui | d. xm file by
going to File>New>XML File. Nameit bui | d. xm and click Finish. There is an example Ant build script in the
Report _Gen project that you can look at for guidance (see Example 35).

Copyright 2018 Adventium Labs 35

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/FASTAR

Integrated AADL Analysis

1 <?xml version="1.@" encoding="UTF-8"2>

2 <!-- Must run in the same JRE as the workspace. Set via run -> run as Ant Build... -->
3= <project name="Build_Example" default="analyze" basedir="."»>

4

5 <!-- This task will clean and refresh the workspace-->

6 <target name="clean">

7 <delete failonerror="false">

8 <fileset dir="analysis" includes="**/*"/>

9 <fileset dir="instances" includes="**/*"/>

10 </delete>

11 <aadltools.refresh.workspace/>

12 </target>

13

14 <!-- This task will instantiate the model declared in the modelResource" input -->
15 <target name="analyze" depends="clean">

16 <aadltools.instantiate.system

17 modelResource="Basswood/basswood_integration_model.aadl"

18 systemImplName="Basswood_Integration_Model.impl"

19 prefix="newinstance"/>

20 <echo>${newinstance.instanceFile}</echo>
21
22 «<l-- This task will perform FASTAR utilization analysis on the instance -->
23 <aadltools.analyzeutilization.system
24 instancefile="${newinstance.instanceFile}"
25 prefix="basswood_utilization"/>
26 <echo>${basswood_utilization.aarFile}</echo>
27
28 <!-- This task will generate the example templates -->
29 <aadltools.generatetemplate.utilization
30 outputProject="Basswood"/>
31
32 <!-- This task will generate the formatted report -->
33 <aadltools.generate.report
34 analysisXMLFile="${basswood_utilization.zarFile}"
35 templateResource="Basswood/analysis/templates/fastar_utilization/html_example.html.template"
36 prefix="basswood_utilization_reportgen"/>
37 </target>
38 </project>

Example 35. Sample Ant build script

The FASTAR suite includes a set of Ant tasks for automating the steps of performing FASTAR analysis. The list of
available tasks can be found in section 4.1 of the CVIS User Guide [https.//camet.adventium.com/CAMET/CAMET/
wikig/tool_pages/continuous-virtual-integration]. The steps to include in your workflow are the same as those that
you went through in the section called “Lesson 4. Utilization Analysis’ and the section called “Lesson 5. Report
Generation”; create an instance, run utilization analysis on the instance, and generate formatted reports. The example
bui | d. xm script shown in Example 35 is split into two sections called targets. The first target, clean, removesthe
i nst ance andanal ysi s directories and refreshes your Eclipse workspace. The second target, analysis, generates
an instance model, performs FASTAR utilization analysis on that instance, generates the example templates, and
createstheHTML and CSV reports. Tasksare called by name and each task has different requirementsfor user declared
inputs and outputs. Check section 4.1 of the CVIS user guide for the requirements of each Ant task. Copy the full
example build script and paste it into your new bui | d. xni file. Verfy that the file and directory namesin each Ant
task are correct for your Basswood project. Run the script by right clicking the bui | d. xm and select Run As>Ant
Build.... Make sure to select the option Run in the same JRE as workspace under the JRE tab of the menu window
before clicking Run. The Console view at the bottom of your Eclipse window will display the progress of your Ant
build. If the Console is not open, go to Window>Show View>Console to open it. A successful Ant build will return
"BUILD SUCCESSFUL" at the end of the console output (see Example 36).

Copyright 2018 Adventium Labs 36

https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration
https://camet.adventium.com/CAMET/CAMET/wikis/tool_pages/continuous-virtual-integration

Integrated AADL Analysis

#EvRy =

© Console x %| 5 0 2 EE
<terminated> Basswood build.xml [Ant Build] C:\L il OLYMPU. i 3 2\C build.xml

Buildfile: C:\Users\swhillock.OLYMPUS\eclipse\osate2 3_2\CleanWorkspaceBALSA\Basswood\build.xml

clean:
[2adltools.refresh.workspace] RefreshiiorkspaceTask classloader: org.eclipse.ant.internal.core.AntClassLoader@58ecocf6

[2adltools.refresh.workspace] RefreshhiorkspaceTaskImpl classloader: org.eclipse.osgi.internal.loader.EquinoxClassloader@ddeads26[com. adventiumlabs.aadltools.plugin:@.10.0.201865316758(id=1152)]
[2adltools.refresh.workspace] About to refresh the workspace

[2adltools.refresh.workspace] Tree locked? false

[2adltools.refresh.workspace] Workspace refresh complete

analyze:
[2adltools.instantiate.system] InstantiateSystemTask classloader: org.eclipse.ant. ir\ternal.cor‘e.AntClassLoader@SBechFG
[adltools.instantiate.system] Waiting for workspace jobs to finish, 4 remaining.
[aadltools. instantiate.system] Removing waiting job Periodic workspace save.(19)
i11

[aadltools. instanti ysten] Job_ Periodic worksp
[echo] C:\l hillock.OLYMPUS\eclips Basswoo tan od_in del_8 Model_impl_Instance.aaxl
tools.ana on. sy stem getAnalysisoutp
tools.analyzel ation.system] getAnalysisOutputLocation.result = F/Basswood/analysis
tools.analyze ation.system] getAnalysisOutputLocation.result(loc) = C:/Users/swhillock.OLYMPUS/eclipse/osate2_3_2/CleanWorkspaceBALSA/Basswood/analysis
tools.analyzeut on.system] getAnalysisOutputlocation.dir=analysis
tools.analyzeut on.system] getAnalysisOutputLocation.result = F/Basswood/analysis
tools.analyzeut on.system] getAnalysisOutputLocation.result(loc) = C:/Users/swhillock.OLYMPUS/eclipse/osate2_3_2/CleanliorkspaceBALSA/Basswood/analysis
tools.analyzeut on.system Wﬁltlng for workspace jobs ¢

echo] C:\Users\swhillo OLYMPUS\eclip 31_134137_aadlty
[2adltools. generatetemglate ut)l)zatjon] com. adver ad1 gin t. mplatecopyTask classloade
[2adltools.generate.report] GenerateReportTask classloader: org.eclipse.ant.internal.core. AntclassLoader@S&echfs
[2adltools.generate.report] Waiting for workspace jobs to finish, 3 remaining.
BUILD SUCCESSFUL
Total time: 50 seconds

Cleank

Example 36. Sample Ant Run Console Output

Lesson 6. Schedulability Analysis

Prerequisites

» Completethesection called “Lesson 4. Utilization Analysis’ and have your AADL Basswood model with utilization
propertiesin your OSATE workspace

» Complete the section called “Lesson 3. Executing a BALSA-Derived Demonstration System” and have the Bass-
wood training example running on RTEMS

* Install the FASTAR Tool Suite prerequisite tools (see the section called “ Additional FACE and AADL Resources’)

Summary

In thislesson, you will learn how to:

1. Add thread WCET details to the Basswood AADL model

2. Add schedulahility analysis properties to the Basswood AADL model
3. Run FASTAR scheduleability analysis on the Basswood AADL model
4. Demonstrate a schedulability failure on the Basswood AADL model

5. Recreate the scheduling failure using Basswood on RTEMS

Adding Timing Properties to the AADL Basswood Model

Switch back to the AADL Per spective. Click the Open Perspective icon in the top right of the OSATE window. Select
AADL and click Open.Return to the Basswood AADL model you used in the section called “Lesson 4. Utilization
Analysis’ and open basswood_schedul e. aadl . Find the thread group property declarations in the subcont
ponent s of rt ens. i npl . Each thread group already hasaper i od property declaration. Edit the periods so each
thread hasaperiod of 1000 m | | i seconds. Adddead! i ne propertiesto each of the thread groupsthat are equal
to their periods. Assignapri ori ty to each thread group such that ATCManager thread group has the highest pri-
ority and Ai r Conf i g hasthelowest priority. The FASTAR MAST analysistool followsthe ARINC653 definition of
prioritieswhere higher numbersindicate higher priorities. Finally, assigna200 ns Conput e_Executi on_Ti ne

Copyright 2018 Adventium Labs 37

Integrated AADL Analysis

property to each thread group as shown in Example 37. Note that you are using properties on the thread groups to
describe the behavior of the thread within it. To clarify to the MAST analysis tool that the properties refer to a par-
ticular thread, add an appl i es t o clause after each property declaration as shown in Example 37. These property
declarations will now override any that are applied to the threads themselves (e.g. the periods that were generated
when the Basswood model was initially translated).

44 process inmplenentation rtens.inpl
45 subcomponent s
46 ATCManager: thread group basswood PCS:: ATCMVanager . i npl {

47 priority => 10 applies to ATCThread;

48 peri od => 1000ns applies to ATCThread,

49 deadl i ne => 1000nms applies to ATCThread;

50 Conput e_Execution_Tine => 200nms .. 200ns applies to ATCThread;
51 b

52 EA : thread group basswood PSSS:: EQ . i npl{

53 priority => 5 applies to EG Thread;

54 peri od => 1000ns applies to EGQ Thread,

55 deadl i ne => 1000nms applies to EG Thread;

56 Conput e_Execution_Tine => 200nms .. 200ns applies to egi Thread;
57 b

58 Ai rConfig: thread group basswood_PSSS: : Ai r Confi gUoP. i npl {

59 priority => 1 applies to airConfThread;

60 peri od => 1000ns applies to airConfThread;

61 deadl i ne =>1000ns applies to airConfThread;

62 Conput e_Execution_Tine => 200ns .. 200ns applies to airConfThread,
63 }s

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L6_basswood/ basswood_schedul e. aadl]

Example 37. Update period and add deadline and execution times

You have now configured your Basswood system with an execution schedule for the genu_x86 processor. This
schedule configuration is going to serve as your successful shedulability analysis example. Later you will adjust these
values to show what happens when you configure your schedule incorrectly and overload the processor.

Navigate back to genu_x86. i npl in the file basswood_schedul e. aadl . Recall from the section called
“Adding Utilization Properties to the Basswood Model”, that the processor already has some scheduling properties
declared (see Example 38).

74 processor inplenmentation genmu_x86. i npl
75 properties

76 C ock_Period => 10 ms;
77 FASTAR: : Packet Header Size => 100 Bytes .. 100 Bytes;
78 Transmi ssion Tinme => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];

79 end genmu_x86. i npl;
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/trai ni ng_materi al s/ L4_basswood/ basswood_schedul e. aadl]

Example 38. Existing scheduling properties

Thed ock_Per i od property establishesthetime it takes the processor to perform any given instruction. In the case
of Basswood, the Qemu processor has a clock period of 10 ms. The Packet Header _Si ze property states that

Copyright 2018 Adventium Labs 38

Integrated AADL Analysis

the processor adds a 100 Byte header to any data packet it processes. The final property is Tr ansmi ssi on_Ti ne,
which states that communications are transmitted at a speed of 1 microsecond per Byte. Add two additional scheduling
property declarations to this processor: Schedul i ng_Protocol andPriority Range.Priority Range
declares which thread priority levels are handled by a processor. Give genu_x86. i npl apriority range of 1 - 20,
which indicatesthat gemu_x86. i npl iscapable of processing all of the threads and thread groupsin the Basswood
software model. For Schedul i ng_Pr ot ocol , declarethat genu_x86. i npl isusing rate-monotonic scheduling
(RMS) asthe tasks in Basswood have static priorities (see Example 39).

120 processor inplenmentation gemu_x86. i npl
121 properties
122 Schedul i ng_Protocol => (RVS);

123 Priority_Range => 1 .. 20;

124 Cl ock_Period => 10 ns;

125 FASTAR : Packet Header Size => 100 Bytes .. 100 Bytes;

126 Transmission_Time => [Fixed => 0 ns .. 0 ns; PerByte => 1 us .. 1 us;];

127 end genmu_x86. i nmpl ;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L6_basswood/ basswood_schedul e. aadl]

Example 39. Add scheduling protocol and priority range

Performing Schedulability Analysis on Basswood

Now that you have added scheduling and worst case execution time (WCET) properties to your AADL Bass-
wood, you can add aFASTAR_Anal ysi s property declaration to Basswood_| nt egr ati on_Mdel . i npl in
basswood_i nt egrati on_nodel . aadl . This property declaration tells the FASTAR tool which analysis tool
to use on your model. For Basswood, you will use MAST analysis. The system connecitons are bound to the virtual bus
named queue. Thisdeclares that al threads share the same queue. Finally, declare that all threadsuseaPer i odi ¢
Di spat ch_Pr ot ocol asshown in Example 40.

60 properties

61 Actual _Processor_Binding => (reference (x86)) applies to proc;

62 Actual _Menory Binding => (reference (x86)) applies to proc;

63 Act ual _Connection_Binding => (reference(queue)) applies to connectionO,
64 connectionl, connection2, connection3;

65 Di spatch_Protocol => Periodic applies to proc. AirConfig.airConfThread,
66 proc. ATCManager . ATCThr ead, proc. EQ . egi Thr ead;

67 FASTAR: : Anal ysi s => MAST;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/trai ning_material s/ L6 _basswood/ basswood_i nt egrati on_nodel .

Example 40. Add FASTAR Analysis and Periodic Dispatch Protocol

Y ou now have sufficient detail on your Basswood model to yield analysis results from the FASTAR schedul ability
tool. Create an instance model of Basswood_| nt egrati on_Model . i npl by right clicking it in the Outline
view and selecting Instantiate. Locate the instance model in the AADL Navigator view and make sure it is selected.
Run the FASTAR schedulability analysis tool by going to Model Analysis>Analyze Schedulability. The tool will
generate warnings in the Problems view indicating that your have some components and connections bound to virtual
components with no hardware binding (see Figure 20). These warnings are indicating that your queue component
is not bound to a hardware resource. This is fine for now, as the tool will still perform the schedulability analysis
covered by thistraining.

Copyright 2018 Adventium Labs 39

Integrated AADL Analysis

¥ Problems = £ Properties ® AADL Property Values = Console + Search
0 errors, 4 warnings, 0 others
Description
4 & Warnings (4 items)
“ proc AirConfig.airConfThread.AirConfig_to_ATC_port -> Template_view_from_Aircraft Config_transporter.input: Connection bound to a virtual resource that has no binding.
% proc.EGlegiThread.EGI_to_ATC_port -> Template_view_from_EGI_Data_transporter.input0: Connection bound to a virtual resource that has no binding.
s Template_view_from_Aircraft_Config_transporter.output -> proc. ATCManager. ATCThread. ATC_From_AirConfig_Port: Connection bound to a virtual resource that has no binding.
o Template_view_from_EGI Data_transporter.output -> proc ATCManager ATCThread. ATC_From_EGI_Port: Connection bound to a virtual resource that has no binding.

Figure 20. FASTAR war nings about missing har dwar e bindings

Navigatetother epor t s directory and open the CSV schedulability analysisreport (see Figure 21). the section called
“Interpreting the Schedulability Analysis Report” explains the contents of the FASTAR schedulability report.

A B © D E F G H
1 Mode system.no-mode
2
3
4 BlackBox Resource Analysis
3 Name util Slack Q Size
6 Template_view_from_Aircraft_
7 Template_view_from_EGI_Dat:
8
9 BlackBox Task Analysis
10 Name Min Latency Max Latency Relative to Jitter Slack
11
12 MAST Resource Analysis
13 Name util Slack Q Size
14 proc.ATCManager
15 proc.AirConfig
16 proc.EGI
17 queue
18 x86 0.599999964
19
20 MAST Task Analysis
21 Name Min Latency Max Latency Relative to Jitter Slack
22 proc
23 proc.AirConfig.airConfThread 200.0ms 600.0ms proc.AirConfig.airConfThread 400.0000305175781ms
24 proc.ATCManager.ATCThread 200.0ms 200.0ms proc.ATCManager.ATCThread 0.0ms
25 proc.EGl.egiThread 200.0ms 400.0ms proc.EGl.egiThread 200.0ms
26
27 FASTAR Flow Analysis
28 Flow Name Element Segment@End Remain@Start Sum@End Allowed
29 etef
30 egiThread.EGI_to_ATC_port_source 15.0ms 65.0ms 15.0ms
31 proc.EGl.egiThread.EGI_to_ATC_port -> Template_vi 0.0ms 50.0ms 15.0ms
32 Template_view_from_EGI_Data_transporter.flow_p: 0.0ms 50.0ms 15.0ms
33 Template_view_from_EGI_Data_transporter.output 0.0ms 50.0ms 15.0ms
34 ATCThread.ATC_From_EGI_Port_sink 50.0ms 65.0ms 500.0ms
35 etef2
36 airConfThread.AirConfig_to_ATC_port_source 15.0ms 65.0ms 15.0ms
37 proc.AirConfig.airConfThread.AirConfig_to_ATC_por 0.0ms 50.0ms 15.0ms
38 Template_view_from_Aircraft_Config_transporter.fl 0.0ms 50.0ms 15.0ms
39 Template_view_from_Aircraft_Config_transporter.o' 0.0ms 50.0ms 15.0ms
40 ATCThread.ATC_From_AirConfig_Port_sink 50.0ms 65.0ms 500.0ms

Figure 21. Schedulability report with a Successful Result

Interpreting the Schedulability Analysis Report

The top sections of the report are the MAST and BlackBox resource analysis results. The BlackBox utilization report
should be empty as the only components of the system that are bound to a "black box" resource are the transporter
segmentsthat do not have any utilization or schedulability propertiestied to them. For Basswood in this configuration,
the MAST utilization of the resource x86 is 0.6 or 60% (see Figure 22). Recall that the utilization analysis tool from
the section called “Lesson 4. Utilization Analysis’ reported a utilization of 0.45 or 45%. The schedulability tool takes
into account the dynamic behavior of the system when computing the processor utilization, thus the discrepency in
the result from the utilization analysis tool.

Copyright 2018 Adventium Labs 40

Integrated AADL Analysis

12 MAST Resource Analysis

13 Name Util Slack
14 proc.ATCManager

15 proc.AirConfig

16 proc.EGI

17 queue

18 x86 0.599999964

Figure 22. Processor Utilization Report

The next section isthe MAST task analysis result that computes worst case execution times for each of the threads
against the other tasks and their specified deadlines. Recall that you gave each thread a period and a deadline of
1 second. With three threads, each with a 200 ms execution time, you expect that all three threads will meet their
deadlines with the third thread being completed by 600ms. The analysistool report showsthat thisis, indeed, the case
(see Figure 23).

MAST Task Analysis

Name Min Latency Max Latency Relative to Jitter Slack
proc

proc.AirConfig.airConfThread 200.0ms 200.0ms proc.AirConfig.airConfThread 0.0ms
proc.ATCManager.ATCThread 200.0ms 600.0ms proc.ATCManager. ATCThread 400.0000305175781ms
proc.EGl.egiThread 200.0ms 400.0ms proc.EGl.egiThread 200.0ms

Figure 23. Report Confirming that Deadlines are M et

The final section of the report is the FASTAR Flow Analysis (see Figure 24). Thisis similar to the standard OSATE
latency analysis tool you used in the section called “Lesson 2. Modifying the BALSA AADL Model”. The FASTAR
flow analysistool takesinto account the dynamic behaviors of the thread executions aswell astheLat ency property
declarations. It includes the latency of each segment of the flow in the first column as well as the running total of the
flow in the third column. The total flow latency is compared to the declared budget found in the Allowed column.
Observe that the total flow latency of 65 msiswithin the set limit of 500 ms for both end to end flows.

FASTAR Flow Analysis

Flow Name Element Segment@End Remain@Start Sum@End Allowed
etef
egiThread.EGI_to_ATC_port_source 15.0ms 65.0ms 15.0ms
proc.EGl.egiThread.EGI_to_ATC_port -> Template_ 0.0ms 50.0ms 15.0ms
Template_view_from_EGI_Data_transporter.flow_ 0.0ms 50.0ms 15.0ms
Template_view_from_EGI_Data_transporter.outpi 0.0ms 50.0ms 15.0ms
ATCThread.ATC_From_EGI_Port_sink 50.0ms 65.0ms 500.0ms
etef2
airConfThread.AirConfig_to_ATC_port_source 15.0ms 65.0ms 15.0ms
proc.AirConfig.airConfThread.AirConfig_to_ATC_p 0.0ms 50.0ms 15.0ms
Template_view_from_Aircraft_Config_transporter 0.0ms 50.0ms 15.0ms
Template_view_from_Aircraft_Config_transporter 0.0ms 50.0ms 15.0ms
ATCThread.ATC_From_AirConfig_Port_sink 50.0ms 65.0ms 500.0ms

Figure 24. Flow latency within budget

Demonstrating a Schedulability Analysis Failure
Now that you have an example of a schedulability analysis success, you are going to build a schedule that will
overload the processor. To avoid overwriting your previous success example, build a second implementation of the

rtemns processinthebasswood_schedul e. aadl fileand nameitrt ens. f ai | . Copy and paste the contents
ofrtems.inpl intortens. fail (see Example4l).

78 process inplenentation rtens.fail
From [/ cygdri ve/ c/ Repos/ DO3/ BAT/ trai ni ng_mat eri al s/ L6_basswood/ basswood_schedul e. aadl]

Example 41. Create an implementation that fails

Copyright 2018 Adventium Labs 41

Integrated AADL Analysis

Navigate to the subcomponentsof r t ens. f ai | and alter the properties of the thread groups as shown in Example 42.

81 subcomponent s
82 ATCManager: thread group basswood PCS:: ATCVanager . i npl {

83 priority => 10 applies to ATCThread;

84 period => 100 ns applies to ATCThread,

85 deadl i ne => 100 s applies to ATCThread;

86

87 Conput e_Execution_Tine => 50ns .. 50ns applies to ATCThread,;
88 }s

89 EA: thread group basswood PSSS:: EQ . i npl{

90 priority => 5 applies to EG Thread;

91 peri od => 200ns applies to EAQ Thread;

92 deadl i ne => 200ns applies to EAQ Thread;

93 Conput e_Execution_Tine => 100nms .. 100ns applies to egi Thread;
94 }s

95 Ai rConfig: thread group basswood_PSSS: : Ai r Confi gUoP. i npl {

96 priority => 1 applies to AirConfThread;

97 peri od => 1000ns applies to AirConfThread;

98 deadl i ne =>1000ns applies to AirConfThread;

99 Conput e_Execution_Tine => 100ns .. 100ns applies to airConfThread,
100 }s

From [/ cygdrive/ c/ Repos/ DO3/ BAT/trai ni ng_materi al s/ L6_basswood/ basswood_schedul e. aadl]

Example 42. Alter propertiesto fail

This configuration should cause the threads to miss their deadlines since the lower priority Ai r Conf i g thread will
be preempted by the higher priority threads when they dispatch at faster rates. In Figure 25, we illustrate the failure
scenario you have just set up using your AADL model.

ATC depends on EGI and AirConfig. It will miss its
deadlines if AirConfig does not run.

ATC (10hz, 50ms, high priority)
T T T T T T —

EGI (5hz, 100ms, medium priority)

AirConfig has the longest period (and therefore
the lowest priority in a Rate Monotonic Schedule)
and will always be preempted.

Figure 25. A configuration wherethreads misstheir deadlines

Copyright 2018 Adventium Labs 42

Integrated AADL Analysis

Recall that you declared that the deadlines of each of the threads are equal to their periods. Thered linein the diagram
indicates the deadline of Ai r Confi g.

Next createacopy of Basswood_| nt egrati on_Model . i npl inbasswood_i nt egrati on_nodel . aadl
and rename it Basswood_| nt egr at i on_Mdel . f ai | . Change the pr oc subcomponent fromrt ens. i npl
to your newly created implementationr t ens. f ai | (see Example 43).

72 system i npl enent ati on Basswood_| nt egrati on_Mdel . fail
73 subcomponent s
74 proc: process basswood _schedule::rtens.fail;

From [/ cygdrive/ c/ Repos/ DO3/ BAT/ trai ni ng_materi al s/ L6_basswood/ basswood_i nt egrati on_nodel .

Example 43. Updateto the Proc that will Fail

Generate an instance model of this new system implementation by selecting
Basswood_| ntegrati on_Model . fail intheOutlineview, right clicking, and selecting the menu option In-
stantiate. Select the newly generated instance model of basswood_i nt egrati on_nodel . fail inthe AADL
Navigator view and go to Model Analysis>Analyze Schedulability. Thetool will generate the same output report files
as earlier, but it will also generate 4 errors on the model as shown in the Problems view (see Figure 26).

! Problems # [Properties ™ AADL Property Values & Console < Search

4 errors, 14 warnings, 0 others

Description

< @ Errors (4 items)
@ proc.AirConfig.airConfThread: MAST missing response time result (host resource may be overloaded).
O proc ATCManager.ATCThread: MAST missing response time result (host resource may be overloaded).
@ proc.EGLegiThread: MAST missing response time result (host resource may be overloaded).
O x86: MAST total demand on this resource exceeds 100% utilization.

Figure 26. FASTAR Errors

The errors generated by the tool indicate that the threads are missing their deadlines and the processor is overloaded.
Open the CSV report and note that it shows the same error outputs as the console (see Figure 27).

A B c

Errors
Component Message
x86 MAST total demand on this resource exceeds 100% utilization.
proc.AirConfig.airConfThread MAST missing response time result (host resource may be overloaded).
proc.ATCManager.ATCThread MAST missing response time result (host resource may be overloaded).
proc.EGl.egiThread MAST missing response time result (host resource may be overloaded).

~N o kR W N

Figure 27. Schedulability report with errors

Y ou have now successfully generated a model of a priority inversion scenario. Next you will demonstrate a priority
inversion using Basswood on RTEMS.

Executing the Priority Inversion in RTEMS

Y ou are ready to see the priority inversion example execute in the RTEM S run-time environment. Refer to the section
called “Lesson 3. Executing a BALSA-Derived Demonstration System” to recall how to generate source code for the

Copyright 2018 Adventium Labs 43

Integrated AADL Analysis

RTEMS run-time environment and how to configure and start the RTEMS VirtualBox virtual machine. To run the
example, perform the following steps:

Generate the source code from the AADL model, which resultsin anew schedul e. c file.

Start and login to the RTEMS VirtualBox virtual machine, and copy the schedul e. c to the ~/ devel op-
ment / basswood/ aut ogen/ Basswood directory (overwrite the old copy if necessary).

Bring up a command line terminal, and in the same directory, opentheuti | i zati on. c in an editor. Set each
* demand to zero. This will set the execution time of each component in the system to equal their worst-case
execution time by default.

Return to the~/ devel opment / basswood directory, and build the system by typing

$ make main

When the build is compl ete, you can invoke a simple script to execute the example model within the RTEMS run-
time environment.

$./run

The EGI and AirConfig components will periodically send simulated aircraft and position data to the ATC com-
ponent. The ATC component receives the data and simply prints out the results as it receives it. The results are
streamed to the terminal output. The system isdesigned to terminate automatically after 10 sets of messageiterations
between the components, and the number of missed ATC periodsislisted at the end. The RTEM S environment will
then re-initialize and restart the system. Y ou can stop the run by pressing Cont r ol - c.

Copyright 2018 Adventium Labs 44

	Integrated AADL Analysis
	Table of Contents
	Overview
	Additional FACE and AADL Resources
	Setup
	Lesson 1. The BALSA Model
	Prerequisites
	Summary
	Navigating in OSATE
	What is BALSA?
	Installing the FACE Data Model to AADL Translator
	Using the FACE Data Model to AADL Translator
	Exploring the BALSA AADL model
	Using OSATE tools to Create and View Diagrams

	Lesson 2. Modifying the BALSA AADL Model
	Prerequisites
	Summary
	Introduction to Data Flows in AADL
	Adding Threads to the AADL BALSA Model
	Adding End to End Flows to the AADL BALSA Model
	Adding Properties to an AADL Model
	Performing Latency Analysis on the AADL BALSA Model
	Optional: Packaging the Transporters into a single TSS Example

	Lesson 3. Executing a BALSA-Derived Demonstration System
	Prerequisites
	Summary
	Introduction to Basswood
	Configuring Basswood Real-Time Attributes
	Configuring the Real-Time Execution Environment
	Generating Source Code and Running the Real-Time Application

	Lesson 4. Utilization Analysis
	Prerequisites
	Summary
	Adding Utilization Properties to the Basswood Model
	Performing Utilization Analysis on the Basswood Model
	Utilization Success of Basswood on RTEMS
	Utilization Failure of Basswood on RTEMS
	Demonstrate a Utilization Failure in AADL

	Lesson 5. Report Generation
	Prerequisites
	Summary
	Creating an Example Report Template
	Generating a Formatted FASTAR Utilization Report
	Optional: Automating Analysis and Report Generation using Ant

	Lesson 6. Schedulability Analysis
	Prerequisites
	Summary
	Adding Timing Properties to the AADL Basswood Model
	Performing Schedulability Analysis on Basswood
	Interpreting the Schedulability Analysis Report
	Demonstrating a Schedulability Analysis Failure
	Executing the Priority Inversion in RTEMS

